Project description:Amyloid fibrils derived from antibody light chains are key pathogenic agents in systemic AL amyloidosis. They can be deposited in multiple organs but cardiac amyloid is the major risk factor of mortality. Here we report the structure of a λ1 AL amyloid fibril from an explanted human heart at a resolution of 3.3 Å which we determined using cryo-electron microscopy. The fibril core consists of a 91-residue segment presenting an all-beta fold with ten mutagenic changes compared to the germ line. The conformation differs substantially from natively folded light chains: a rotational switch around the intramolecular disulphide bond being the crucial structural rearrangement underlying fibril formation. Our structure provides insight into the mechanism of protein misfolding and the role of patient-specific mutations in pathogenicity.
Project description:The amino acid sequence of the variable region of a carbohydrate-containing amyloid-fibril protein MOL of immunoglobulin-light-chain type (AL) was elucidated. The sequence determination involved cleaving the protein with CNBr, BNPS-skatole, thermolysin and trypsin. The sequenced protein consisted of about 130 amino acid residues; however, gel-filtration and N-terminal analysis studies revealed AL proteins ranging in Mr from about 10,000 to 25,000. The oligosaccharide chain was found to be bound in the hypervariable region. By sequence homology to other lambda chains the AL protein MOL was shown to be of the V lambda III subgroup.
Project description:The primary structure of the variable region of an amyloid-fibril protein GIL of immunoglobulin lambda-light-chain origin (AL) was determined. The AL protein obtained from the fibrils in the spleen of a 54-year-old man with primary systemic amyloidosis could be assigned to subgroup IV of the lambda variable-region sequence. About 50% of the protein was found to be truncated in the N-terminus and lacked the first six amino acid residues. The polypeptides consisted of about 146 amino acid residues and contained traces of carbohydrate. An acceptor site for N-glycosylation was found in positions 90-93, but no glycopeptide could be isolated. Comparison of the amino acid sequence of AL protein GIL with that of the only Bence-Jones protein of subgroup IV previously studied revealed a sequence homology of 89%. A similar comparison made with other AL proteins gave sequence homologies below 66%.
Project description:A newly-recognized pathogenic mechanism underlying light chain amyloidosis (AL) involves endothelial dysfunction and cell injury caused by misfolded light chain proteins (LC). Nanoliposomes (NL) are artificial phospholipid vesicles that could attach to misfolded proteins and reduce tissue injury.To test whether co-treatment with NL reduces LC-induced endothelial dysfunction and cell death.Abdominal subcutaneous adipose arterioles from 14 non-AL subjects were cannulated; dilator response to acetylcholine and papaverine were measured at baseline and following 1-hour exposure to LC (20 µg/mL, 2 purified from AL subjects' urine, 1 from human recombinant LC [AL-09]) ± NL (phosphatidylcholine/cholesterol/phosphatidic acid 70/25/5 molar ratio) or NL alone. Human aortic artery endothelial cells (HAEC) were exposed to Oregon Green-labeled LC ± NL for 24 hours and intracellular LC and apoptosis (Hoechst stain) were measured. Circular dichroism spectroscopy was performed on AL-09 LC ± NL to follow changes in secondary structure and protein thermal stability.LC caused impaired dilation to acetylcholine that was restored by NL (control - 94.0 ± 1.8%, LC - 65.0 ± 7.1%, LC + NL - 95.3 ± 1.8%, p ? 0.001 LC versus control or LC + NL). NL protection was inhibited by L-NG-nitroarginine methyl ester. NL increased the beta sheet structure of LC, reduced endothelial cell internalization of LC and protected against LC-induced endothelial cell death.LC induced human adipose arteriole endothelial dysfunction and endothelial cell death, which were reversed by co-treatment with NL. This protection may partly be due to enhancing LC protein structure and reducing LC internalization. Nanoliposomes represent a promising new class of agents to ameliorate tissue injury from protein misfolding diseases such as AL.
Project description:Amyloid fibrils are proteinaceous aggregates associated with diseases in humans and animals. The fibrils are defined by intermolecular interactions between the fibril-forming polypeptide chains, but it has so far remained difficult to reveal the assembly of the peptide subunits in a full-scale fibril. Using electron cryomicroscopy (cryo-EM), we present a reconstruction of a fibril formed from the pathogenic core of an amyloidogenic immunoglobulin (Ig) light chain. The fibril density shows a lattice-like assembly of face-to-face packed peptide dimers that corresponds to the structure of steric zippers in peptide crystals. Interpretation of the density map with a molecular model enabled us to identify the intermolecular interactions between the peptides and rationalize the hierarchical structure of the fibril based on simple chemical principles.