Project description:Homologous recombination deficiency (HRD) is a predictive marker for response to poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian carcinoma. HRD scores have entered routine diagnostics, but the influence of algorithms, parameters and confounders has not been analyzed comprehensively. A series of 100 poorly differentiated ovarian carcinoma samples was analyzed using whole exome sequencing (WES) and genotyping. Tumor purity was determined using conventional pathology, digital pathology, and two bioinformatic methods. HRD scores were calculated from copy number profiles determined by Sequenza and by Sclust either with or without fixed tumor purity. Tumor purity determination by digital pathology combined with a tumory purity informed variant of Sequenza served as reference method for HRD scoring. Seven tumors had deleterious mutations in BRCA1/2, 12 tumors had deleterious mutations in other homologous recombination repair (HRR) genes, 18 tumors had variants of unknown significance (VUS) in BRCA1/2 or other HRR genes, while the remaining 63 tumors had no relevant alterations. Using the reference method for HRD scoring, 68 tumors were HRD-positive. HRDsum determined by WES correlated strongly with HRDsum determined by single nucleotide polymorphism (SNP) arrays (R = 0.85). Conventional pathology systematically overestimated tumor purity by 8% compared to digital pathology. All investigated methods agreed on classifying the deleterious BRCA1/2-mutated tumors as HRD-positive, but discrepancies were observed for some of the remaining tumors. Discordant HRD classification of 11% of the tumors was observed comparing the tumor purity uninformed default of Sequenza and the reference method. In conclusion, tumor purity is a critical factor for the determination of HRD scores. Assistance by digital pathology helps to improve accuracy and imprecision of its estimation.
Project description:Homologous Recombination (HR) repair is essential for repairing DNA double strand breaks (DSB) in dividing cells and preventing tumorigenesis. BRCA2 plays an important role in HR by recruiting the DNA recombinase RAD51 to the DSB. Despite being a popular model organism in genetic and cancer research, knowledge on the conservation of the HR pathway and function of zebrafish Brca2 is limited. To evaluate this, we developed a Rad51 foci assay in zebrafish embryos. We identified the zebrafish embryonic intestinal tissue as an ideal target for Rad51 immunostaining. After inducing DSB through irradiation, Rad51 foci were present in irradiated embryos but not in unirradiated controls. We present a method for accurate quantification of HR. Both morpholino-induced knockdown and knockout of Brca2 lead to almost complete absence of Rad51 foci in irradiated embryos. These findings indicate conserved function of Brca2 in zebrafish. Interestingly, a statistically significant decrease in Rad51 foci was observed in Brca2 heterozygous carriers compared to wild types, indicative of haploinsufficiency, a hypothesised cause of some tumours in patients with a germline BRCA2 mutation. In conclusion, we demonstrated the suitability of zebrafish as an excellent in vivo model system for studying the HR pathway and its functionality.
Project description:Homologous recombination repair deficiency (HRD) can be observed in virtually all cancer types. Although HRD sensitizes tumors to DNA-damaging chemotherapy and poly(ADP-ribose) polymerase (PARP) inhibitors, all patients ultimately develop resistance to these therapies. Therefore, it is necessary to identify therapeutic regimens with a more durable efficacy. HRD tumors have been suggested to be more immunogenic and, therefore, more susceptible to treatment with checkpoint inhibitors. In this review, we describe how HRD might mechanistically affect antitumor immunity and summarize the available translational evidence for an association between HRD and antitumor immunity across multiple tumor types. In addition, we give an overview of all available clinical data on the efficacy of checkpoint inhibitors in HRD tumors and describe the evidence for using treatment strategies that combine checkpoint inhibitors with PARP inhibitors.
Project description:Several tumor types have been efficiently treated with PARP inhibitors (PARPis), which are now approved for the treatment of ovarian, breast, prostate, and pancreatic cancers. The BRCA1/2 genes and mutations in many additional genes involved in the HR pathway may be responsible for the HRD phenomenon. The aim of the present study was to investigate the association between genomic loss of heterozygosity (gLOH) and alterations in 513 genes with targeted and immuno-oncology therapies in 406 samples using an NGS assay. In addition, the %gLOHs of 24 samples were calculated using the Affymetrix technology in order to compare the results obtained via the two methodologies. HR variations occurred in 20.93% of the malignancies, while BRCA1/2 gene alterations occurred in 5.17% of the malignancies. The %LOH was highly correlated with alterations in the BRCA1/2 genes, since 76.19% (16/21) of the BRCA1/2 positive tumors had a high %LOH value (p = 0.007). Moreover, the LOH status was highly correlated with the TP53 and KRAS statuses, but there was no association with the TMB value. Lin's concordance correlation coefficient for the 24 samples simultaneously examined via both assays was 0.87, indicating a nearly perfect agreement. In conclusion, the addition of gLOH analysis could assist in the detection of additional patients eligible for treatment with PARPis.
Project description:SignificanceHRD is common in cancer and can be exploited therapeutically, as it sensitizes cells to DNA-damaging agents. Here, we scored more than 1,300 cancer cell lines for HRD using two different bioinformatic approaches, thereby enabling large-scale analyses that provide insights into the etiology and features of HRD.
Project description:BackgroundKnowing the homologous recombination deficiency (HRD) status in advanced epithelial ovarian cancer (EOC) is vital for patient management. HRD is determined by BRCA1/BRCA2 pathogenic variants or genomic instability. However, tumor DNA analysis is inconclusive in 15-19% of cases. Peritoneal fluid, available in > 95% of advanced EOC cases, could serve as an alternative source of cell-free tumor DNA (cftDNA) for HRD testing. Limited data show the feasibility of cancer panel gene testing on ascites cfDNA but no study, to date, has investigated HRD testing.MethodsWe collected ascites/peritoneal washings from 53 EOC patients (19 from retrospective cohort and 34 from prospective cohort) and performed a Cancer Gene Panel (CGP) using NGS for TP53/HR genes and shallow Whole Genome Sequencing (sWGS) for genomic instability on cfDNA.ResultscfDNA was detectable in 49 out of 53 patients (92.5%), including those with limited peritoneal fluid. Median cfDNA was 3700 ng/ml, with a turnaround time of 21 days. TP53 pathogenic variants were detected in 86% (42/49) of patients, all with HGSOC. BRCA1 and BRCA2 pathogenic variants were found in 14% (7/49) and 10% (5/49) of cases, respectively. Peritoneal cftDNA showed high sensitivity (97%), specificity (83%), and concordance (95%) with tumor-based TP53 variant detection. NGS CGP on cftDNA identified BRCA2 pathogenic variants in one case where tumor-based testing failed. sWGS on cftDNA provided informative results even when tumor-based genomic instability testing failed.ConclusionProfiling cftDNA from peritoneal fluid is feasible, providing a significant amount of tumor DNA. This fast and reliable approach enables HRD testing, including BRCA1/2 mutations and genomic instability assessment. HRD testing on cfDNA from peritoneal fluid should be offered to all primary laparoscopy patients.
Project description:Tumors harboring homologous recombination deficiency (HRD) are considered optimal candidates for poly(ADP-ribose) polymerase 1 (PARP) inhibitor treatment. Such deficiency can be detected by analyzing breast cancer type (BRCA)1/2 gene mutations, as well as mutations in other genes of the homologous recombination pathway. The algorithmic measurement of the HRD effect by identifying genomic instability (GI) has been used as biomarker. As compared with the direct measurement of somatic gene alterations, this approach increases the number of patients who could benefit from PARP inhibitor treatment. In the present study, the performance of the Oncoscan CNV assay, accompanied by appropriate bioinformatic algorithms, was evaluated for its performance in GI calculation and was compared with that of a validated next-generation sequencing (NGS) test (myChoice HRD test). In addition, the clinical utility of the GI score (GIS) and BRCA1/2 tumor analysis were investigated in a cohort of 444 patients with ovarian cancer. For that reason, single nucleotide polymorphism (SNP) arrays and appropriate bioinformatics algorithms were used to calculate GIS in 29 patients with ovarian cancer with known GIS status using a validated NGS test. Furthermore, BRCA1/2 analysis results were compared between the aforementioned assay and the amplicon-based Oncomine™ BRCA Research Assay. BRCA1/2 analysis was performed in 444 patients with ovarian cancer, while GIS was calculated in 175 BRCA1/2-negative cases. The bioinformatics algorithm developed for GIS calculation in combination with NGS BRCA1/2 analysis (RediScore), and the OncoscanR pipeline exhibited a high overall agreement with the validated test (93.1%). In addition, the Oncomine NGS assay had a 100% agreement with the validated test. The BRCA1/2 mutation frequency was 26.5% in the examined patients with ovarian cancer. GIS was positive in 40% of the BRCA1/2-negative cases. The RediScore bioinformatics algorithm developed for GIS calculation in combination with NGS BRCA1/2 analysis is a viable and effective approach for HRD calculation in patients with ovarian cancer, offering a positive prediction for PARP inhibitor responsiveness in 55% of the patients.
Project description:BackgroundUterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy, with individuals with advanced uLMS having a five-year survival of < 10%. Mutations in the homologous recombination (HR) DNA repair pathway have been observed in ~ 10% of uLMS cases, with reports of some individuals benefiting from poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) therapy, which targets this DNA repair defect. In this report, we screened individuals with uLMS, accrued nationally, for mutations in the HR repair pathway and explored new approaches to therapeutic targeting.MethodsA cohort of 58 individuals with uLMS were screened for HR Deficiency (HRD) using whole genome sequencing (WGS), whole exome sequencing (WES) or NGS panel testing. Individuals identified to have HRD uLMS were offered PARPi therapy and clinical outcome details collected. Patient-derived xenografts (PDX) were generated for therapeutic targeting.ResultsAll 13 uLMS samples analysed by WGS had a dominant COSMIC mutational signature 3; 11 of these had high genome-wide loss of heterozygosity (LOH) (> 0.2) but only two samples had a CHORD score > 50%, one of which had a homozygous pathogenic alteration in an HR gene (deletion in BRCA2). A further three samples harboured homozygous HRD alterations (all deletions in BRCA2), detected by WES or panel sequencing, with 5/58 (9%) individuals having HRD uLMS. All five individuals gained access to PARPi therapy. Two of three individuals with mature clinical follow up achieved a complete response or durable partial response (PR) with the subsequent addition of platinum to PARPi upon minor progression during initial PR on PARPi. Corresponding PDX responses were most rapid, complete and sustained with the PARP1-specific PARPi, AZD5305, compared with either olaparib alone or olaparib plus cisplatin, even in a paired sample of a BRCA2-deleted PDX, derived following PARPi therapy in the patient, which had developed PARPi-resistance mutations in PRKDC, encoding DNA-PKcs.ConclusionsOur work demonstrates the value of identifying HRD for therapeutic targeting by PARPi and platinum in individuals with the aggressive rare malignancy, uLMS and suggests that individuals with HRD uLMS should be included in trials of PARP1-specific PARPi.
Project description:Homologous recombination deficiency (HRD) results in impaired double strand break repair and is a frequent driver of tumorigenesis. Here, we develop a genome-wide mutational scar-based pan-cancer Classifier of HOmologous Recombination Deficiency (CHORD) that can discriminate BRCA1- and BRCA2-subtypes. Analysis of a metastatic (n = 3,504) and primary (n = 1,854) pan-cancer cohort reveals that HRD is most frequent in ovarian and breast cancer, followed by pancreatic and prostate cancer. We identify biallelic inactivation of BRCA1, BRCA2, RAD51C or PALB2 as the most common genetic cause of HRD, with RAD51C and PALB2 inactivation resulting in BRCA2-type HRD. We find that while the specific genetic cause of HRD is cancer type specific, biallelic inactivation is predominantly associated with loss-of-heterozygosity (LOH), with increased contribution of deep deletions in prostate cancer. Our results demonstrate the value of pan-cancer genomics-based HRD testing and its potential diagnostic value for patient stratification towards treatment with e.g. poly ADP-ribose polymerase inhibitors (PARPi).
Project description:Homologous recombination deficiency (HRD) is a critical feature guiding drug and treatment selection, mainly for ovarian and breast cancers. As it cannot be directly observed, HRD status is estimated on a small set of genomic instability features from sequencing data. The existing methods often perform poorly when handling targeted panel sequencing data; however, the targeted panel is the most popular sequencing strategy in clinical practices. Thus, we proposed HRD-MILN to overcome the computational challenges from targeted panel sequencing. HRD-MILN incorporated a multi-instance learning framework to discover as many loss of heterozygosity (LOH) associated with HRD status to cluster as possible. Then the HRD score is obtained based on the association between the LOHs and the cluster in the sample to be estimated, and finally, the HRD status is estimated based on the score. In comparison experiments on targeted panel sequencing data, the Precision of HRD-MILN could achieve 87%, significantly improved from 63% reported by the existing methods, where the highest margin of improvement reached 14%. It also presented advantages on whole exome sequencing data. Based on our best knowledge, HRD-MILN is the first practical tool for estimating HRD status from targeted panel sequencing data and could benefit clinical applications.