Project description:The comparative analysis of complex behavioral phenotypes is valuable as a reductionist tool for both drug discovery and defining chemical bioactivity. Flavonoids are a diverse class of chemicals that elicit robust neuroactive and hormonal actions, though bioactivity information is limited for many, particularly for neurobehavioral endpoints. Here, we used a zebrafish larval chemomotor response (LCR) bioassay to comparatively evaluate a suite of 24 flavonoids, and in addition a panel of 30 model neuroactive compounds representing diverse modes of action (e.g. caffeine, chlorpyrifos, methamphetamine, nicotine, picrotoxin). Naïve larval zebrafish were exposed to concentration ranges of each compound at 120 hour post-fertilization (hpf) and locomotor activity measured for 5 h. The model neuroactive compounds were largely behaviorally bioactive (20 of 30) with most effects phenotypic of their known modes of action. Flavonoids rapidly and broadly elicited hyperactive locomotor effects (22 of 24). Multidimensional analyses compared responses over time and identified three distinct bioactive groups of flavonoids based on efficacy and potency. Using GABAergics to modulate hyperactive responses, two flavonoids, (S)-equol and kaempferol were tested for GABAA receptor antagonism, as well as a known GABAA receptor antagonist, picrotoxin. Pharmacological intervention with positive allosteric modulators of the GABAA receptor, alfaxalone and chlormethiazole, ameliorated the hyperactive response to picrotoxin, but not for (S)-equol or kaempferol. Taken together, these studies demonstrate that flavonoids are differentially bioactive and that the chemobehavioral effects likely do not involve a GABAA receptor mediated mode of action. Overall, the integrative zebrafish platform provides a useful framework for comparatively evaluating high-content chemobehavioral data for sets of structurally- and mechanistically-related flavonoids and neuroactive compounds.
Project description:Inhibition and aging of neuropathy target esterase (NTE) by exposure to neuropathic organophosphorus compounds (OPs) can result in OP-induced delayed neuropathy (OPIDN). In the present study we aimed to build a model of OPIDN in adult zebrafish. First, inhibition and aging of zebrafish NTE activity were characterized in the brain by using the prototypic neuropathic compounds cresyl saligenin phosphate (CBDP) and diisopropylphosphorofluoridate (DFP). Our results show that, as in other animal models, zebrafish NTE is inhibited and aged by both neuropathic OPs. Then, a neuropathic concentration inhibiting NTE activity by at least 70% for at least 24 h was selected for each compound to analyze changes in phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs) and glycerolphosphocholine (GPC) profiles. In spite to the strong inhibition of the NTE activity found for both compounds, only a mild increase in the LPCs level was found after 48 h of the exposure to DFP, and no effect were observed by CBDP. Moreover, histopathological evaluation and motor function outcome analyses failed to find any neurological abnormalities in the exposed fish. Thus, our results strongly suggest that zebrafish is not a suitable species for the development of an experimental model of human OPIDN.
Project description:So-Cheong-Ryong-Tang, which is a standardized Korean medicine of the National Health Insurance, is a traditional prescription for the treatment of allergic rhinitis, bronchitis, and bronchial asthma. Simultaneous analysis and development of SCRT is essential for its stability, efficacy, and risk management. In this study, a simple, reliable, and accurate method using ultrahigh-performance liquid chromatography (UPLC) fingerprinting with a diode array detector (DAD) was developed for the simultaneous analysis. The chromatographic separation of the analytes was performed by an ACQUITY UPLC BEH C18 column (1.7 μM, 2.1 × 100 mm, Waters) with a mobile phase of water containing 0.01% (v/v) phosphoric acid and acetonitrile containing 0.01% (v/v) phosphoric acid. The flow rate and detection wavelength were set at 0.4 mL/min and 215, 230, 254, and 280 nm. All calibration curves of the thirteen components showed good linearity (R2 > 0.999). The limit of detection and limit of quantification ranged 0.001-0.360 and 0.004-1.200 µg/mL, respectively. The relative standard deviation (RSD) of intra- and interday was less than 2.60%, and the recoveries were within the range 76.08-103.79% with an RSD value of 0.03-1.50%. The results showed that the developed method was simple, reliable, accurate, sensitive, and precise for the quantification of bioactive components of SCRT.
Project description:Many psychiatric drugs act on multiple targets and therefore require screening assays that encompass a wide target space. With sufficiently rich phenotyping and a large sampling of compounds, it should be possible to identify compounds with desired mechanisms of action on the basis of behavioral profiles alone. Although zebrafish (Danio rerio) behavior has been used to rapidly identify neuroactive compounds, it is not clear what types of behavioral assays would be necessary to identify multitarget compounds such as antipsychotics. Here we developed a battery of behavioral assays in larval zebrafish to determine whether behavioral profiles can provide sufficient phenotypic resolution to identify and classify psychiatric drugs. Using the antipsychotic drug haloperidol as a test case, we found that behavioral profiles of haloperidol-treated zebrafish could be used to identify previously uncharacterized compounds with desired antipsychotic-like activities and multitarget mechanisms of action.
Project description:To identify vascular disruptor compounds (VDCs), this study utilized an in vivo zebrafish embryo vascular model in conjunction with a mouse endothelial cell model to screen a subset of the U.S. Environmental Protection Agency (EPA) ToxCast Phase I chemical inventory. In zebrafish, 161 compounds were screened and 34 were identified by visual inspection as VDCs, of which 28 were confirmed as VDCs by quantitative image analysis. Testing of the zebrafish VDCs for their capacity to inhibit endothelial tube formation in the murine yolk-sac-derived endothelial cell line C166 identified 22 compounds that both disrupted zebrafish vascular development and murine endothelial in vitro tubulogenesis. Putative molecular targets for the VDCs were predicted using EPA's Toxicological Prioritization Index tool and a VDC signature based on a proposed adverse outcome pathway for developmental vascular toxicity. In conclusion, our screening approach identified 22 novel VDCs, some of which were active at nanomolar concentrations.
Project description:Diabetes is a chronic metabolic disease that is a constant problem. Previous studies have reported that Benincasa cerifera Savi. extracts are effective in treating diabetes and its complications. Benincasae Exocarpium (BE) is a fruit peel of B. cerifera that has been reported to be used for the prevention and treatment of metabolic diseases such as hyperglycemia, obesity, and hyperlipidemia. However, there are not enough studies on the compounds and bioassays to support the efficacy of BE. The inhibitory activity of the BE extracts and fractions against advanced glycation end-products (AGE) formation and α-glucosidase activity was evaluated. These assays are relevant for the treatment of type 2 diabetes and its complications. Based on these results, compounds 1-11 were isolated through bioassay-guided isolation. In addition, we developed a high-performance liquid chromatography (HPLC) method that can simultaneously analyze these 11 compounds. Activity evaluation of the compounds was also conducted, and eight compounds exhibited significant activity. Among these, flavonoid compounds showed strong activity. A quantitative evaluation of eight bioactive compounds (2, 5-11) was conducted. In conclusion, this study demonstrated the potential of BE for prevention and treatment of type 2 diabetes and its complications.
Project description:Manganese neurotoxicity is a hallmark of hypermanganesemia with dystonia 2, an inherited manganese transporter defect caused by mutations in SLC39A14. To identify novel potential targets of manganese neurotoxicity, we performed transcriptome analysis of slc39a14-/- mutant zebrafish that were exposed to MnCl2. Differentially expressed genes mapped to the central nervous system and eye, and pathway analysis suggested that Ca2+ dyshomeostasis and activation of the unfolded protein response are key features of manganese neurotoxicity. Consistent with this interpretation, MnCl2 exposure led to decreased whole-animal Ca2+ levels, locomotor defects and changes in neuronal activity within the telencephalon and optic tectum. In accordance with reduced tectal activity, slc39a14-/- zebrafish showed changes in visual phototransduction gene expression, absence of visual background adaptation and a diminished optokinetic reflex. Finally, numerous differentially expressed genes in mutant larvae normalised upon MnCl2 treatment indicating that, in addition to neurotoxicity, manganese deficiency is present either subcellularly or in specific cells or tissues. Overall, we assembled a comprehensive set of genes that mediate manganese-systemic responses and found a highly correlated and modulated network associated with Ca2+ dyshomeostasis and cellular stress. This article has an associated First Person interview with the first author of the paper.
Project description:The zebrafish pronephros is a well-established model to study glomerular development, structure, and function. A few methods have been described to evaluate glomerular barrier function in zebrafish larvae so far. However, there is a need to assess glomerular filtration as well. In the present study, we extended the available methods by simultaneously measuring the intravascular clearances of Alexa fluor 647-conjugated 10-kDa dextran and FITC-conjugated 500-kDa dextran as indicators of glomerular filtration and barrier function, respectively. After intravascular injection of the dextrans, mean fluorescence intensities of both dextrans were measured in the cardinal vein of living zebrafish (4 days postfertilization) by confocal microscopy over time. We demonstrated that injected 10-kDa dextran was rapidly cleared from the circulation, became visible in the lumen of the pronephric tubule, quickly accumulated in tubular cells, and was detectably excreted at the cloaca. In contrast, 500-kDa dextran could not be visualized in the tubule at any time point. To check whether alterations in glomerular function can be quantified by our method, we injected morpholino oligonucleotides (MOs) against zebrafish nonmuscle myosin heavy chain IIA (zMyh9) or apolipoprotein L1 (zApol1). While glomerular filtration was reduced in zebrafish nonmuscle myosin heavy chain IIA MO-injected larvae, glomerular barrier function remained intact. In contrast, in zebrafish apolipoprotein L1 MO-injected larvae, glomerular barrier function was compromised as 500-kDa dextran disappeared from the circulation and became visible in tubular cells. In summary, we present a novel method that allows to simultaneously assess glomerular filtration and barrier function in live zebrafish.
Project description:We recently developed a piggyback knockdown method that was used to knockdown genes in adult zebrafish. In this method, a vivo morpholino (VMO) piggybacks an antisense deoxyoligonucleotide (dO) into the somatic cells and reduces the cognate mRNA levels. In this paper, we tested whether we can piggyback more than one dO with one VMO. We designed various hybrids that had more than one dO that could be piggybacked with one VMO. We chose f7, f8, and αIIb genes and tested their knockdown by the appropriate assays. The knockdown with piggybacking either two or three dOs by one VMO yielded > 85% knockdown efficiency. We also performed knockdown of argonautes and rnaseh separately along with f7. We found the knockdown of f7 occurs when knockdown of argonautes happens and not when rnaseh knockdown was performed, suggesting that RNaseH is involved in mRNA degradation. In conclusion, we developed a method where we could knockdown three genes at one time, and by increasing the concentration of VMO by twofold, we could knockdown six genes simultaneously. These multiple gene knockdowns will not only increase the efficiency of the method in whole genome-wide knockdowns but will also be useful to study multifactorial disorders.
Project description:Among different classes of psychotropic drugs, hallucinogenic agents exert one of the most prominent effects on human and animal behaviors, markedly altering sensory, motor, affective, and cognitive responses. The growing clinical and preclinical interest in psychedelic, dissociative, and deliriant hallucinogens necessitates novel translational, sensitive, and high-throughput in vivo models and screens. Primate and rodent models have been traditionally used to study cellular mechanisms and neural circuits of hallucinogenic drugs' action. The utility of zebrafish ( Danio rerio ) in neuroscience research is rapidly growing due to their high physiological and genetic homology to humans, ease of genetic manipulation, robust behaviors, and cost effectiveness. Possessing a fully characterized genome, both adult and larval zebrafish are currently widely used for in vivo screening of various psychotropic compounds, including hallucinogens and related drugs. Recognizing the growing importance of hallucinogens in biological psychiatry, here we discuss hallucinogenic-induced phenotypes in zebrafish and evaluate their potential as efficient preclinical models of drug-induced states in humans.