Project description:Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy ("tumor cell debris") stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies.
Project description:Small molecules that directly target MYC and are also well tolerated in vivo will provide invaluable chemical probes and potential anti-cancer therapeutic agents. We developed a series of small-molecule MYC inhibitors that engage MYC inside cells, disrupt MYC/MAX dimers, and impair MYC-driven gene expression. The compounds enhance MYC phosphorylation on threonine-58, consequently increasing proteasome-mediated MYC degradation. The initial lead, MYC inhibitor 361 (MYCi361), suppressed in vivo tumor growth in mice, increased tumor immune cell infiltration, upregulated PD-L1 on tumors, and sensitized tumors to anti-PD1 immunotherapy. However, 361 demonstrated a narrow therapeutic index. An improved analog, MYCi975 showed better tolerability. These findings suggest the potential of small-molecule MYC inhibitors as chemical probes and possible anti-cancer therapeutic agents.
Project description:Natural killer (NK) cells and T cells are key effectors of antitumor immune responses and major targets of checkpoint inhibitors. In multiple cancer types, we find that the expression of Wnt signaling potentiator R-spondin genes (e.g., RSPO3) is associated with favorable prognosis and positively correlates with gene signatures of both NK cells and T cells. Although endothelial cells and cancer-associated fibroblasts comprise the R-spondin 3-producing cells, NK cells and T cells correspondingly express the R-spondin 3 receptor LGR6 within the tumor microenvironment (TME). Exogenous expression or intratumor injection of R-spondin 3 in tumors enhanced the infiltration and function of cytotoxic effector cells, which led to tumor regression. NK cells and CD8+ T cells independently and cooperatively contributed to R-spondin 3-induced control of distinct tumor types. The effect of R-spondin 3 was mediated in part through upregulation of MYC and ribosomal biogenesis. Importantly, R-spondin 3 expression enhanced tumor sensitivity to anti-PD-1 therapy, thereby highlighting new therapeutic avenues.SignificanceOur study identifies novel targets in enhancing antitumor immunity and sensitizing immune checkpoint inhibition, which provides a rationale for developing new immunotherapies against cancers. It also offers mechanistic insights on Wnt signaling-mediated modulation of anticancer immunity in the TME and implications for a putative R-spondin-LGR6 axis in regulating NK-cell biology. This article is highlighted in the In This Issue feature, p. 2945.
Project description:Conventional chemotherapeutic agents are limited by their lack of targeting and penetration and their short retention time, and chemotherapy might induce an immune suppressive environment. Peptide self-assembly can result in a specific morphology, and the resulting morphological changes are stimuli responsive to the external environment, which is important for drug permeation and retention of encapsulated chemotherapeutic agents. In this study, a polypeptide (Pep1) containing the peptide sequences PLGLAG and RGD that is responsive to matrix metalloproteinase 2 (MMP-2) was successfully developed. Pep1 underwent a morphological transformation from a spherical structure to aggregates with a high aspect ratio in response to MMP-2 induction. This drug delivery system (DI/Pep1) can transport doxorubicin (DOX) and indomethacin (IND) simultaneously to target tumor cells for subsequent drug release while extending drug retention within tumor cells, which increases immunogenic cell death and facilitates the immunotherapeutic effect of CD4+ T cells. Ultimately, DI/Pep1 attenuated tumor-associated inflammation, enhanced the body's immune response, and inhibited breast cancer growth by combining the actions of DOX and IND. Our research offers an approach to hopefully enhance the effectiveness of cancer treatment.
Project description:BackgroundMultiple myeloma (MM) is an incurable disease. The acquisition of resistance to drugs, including immunomodulatory drugs (IMiDs), has a negative effect on its prognosis. Cereblon (CRBN) is a key mediator of the bioactivities of IMiDs such as lenalidomide. Moreover, genetic alteration of CRBN is frequently detected in IMiD-resistant patients and is considered to contribute to IMiD resistance. Thus, overcoming resistance to drugs, including IMiDs, is expected to improve clinical outcomes. Here, we examined potential mechanisms of a histone deacetylase (HDAC) inhibitor and Akt inhibitor in relapsed/refractory MM patients.MethodsWe established lenalidomide-resistant cells by knocking down CRBN with RNAi-mediated downregulation or knocking out CRBN using CRISPR-Cas9 in MM cells. Additionally, we derived multi-drug (bortezomib, doxorubicin, or dexamethasone)-resistant cell lines and primary cells from relapsed/refractory MM patients. The effects of HDAC and Akt inhibitors on these drug-resistant MM cells were then observed with a particular focus on whether HDAC inhibitors enhance immunotherapy efficacy. We also investigated the effect of lenalidomide on CRBN-deficient cells.ResultsThe HDAC inhibitor suppressed the growth of drug-resistant MM cell lines and enhanced the antibody-dependent cellular cytotoxicity (ADCC) of therapeutic antibodies by upregulating natural killer group 2D (NKG2D) ligands in MM cells. CRBN-deficient cells showed lenalidomide-induced upregulation of phosphorylated glycogen synthase kinase-3 (p-GSK-3) and c-Myc phosphorylation. Moreover, HDAC and Akt inhibitors downregulated c-Myc by blocking GSK-3 phosphorylation. HDAC and Akt inhibitors also exhibited synergistic cytotoxic and c-Myc-suppressive effects. The dual HDAC and PI3K inhibitor, CUDC-907, exhibited cytotoxic and immunotherapy-enhancing effects in MM cells, including multi-drug-resistant lines and primary cells from lenalidomide-resistant patients.ConclusionsThe combination of an HDAC and an Akt inhibitor represents a promising approach for the treatment of relapsed/refractory MM.
Project description:Objects frequently have a hierarchical organization (tree-branch-leaf). How do we select the level to be attended? This has been explored with compound letters: a global letter built from local letters. One explanation, backed by much empirical support, is that attentional competition is biased toward certain spatial frequency (SF) bands across all locations and objects (a SF filter). This view assumes that the global and local letters are carried respectively by low and high SF bands, and that the bias can persist over time. Here we advocate a complementary view in which perception of hierarchical level is determined by how we represent letters in object-files. Although many properties bound to an object-file (i.e., position, color, even shape) can mutate without affecting its persistence over time, we posit that same object-file cannot be used to store information from different hierarchical levels. Thus, selection of level would be independent from locations but not from the way objects are represented at each moment. These views were contrasted via an attentional blink paradigm that presented letters within compound figures, but only one level at a time. Attending to two letters in rapid succession was easier if they were at the same-compared to different-levels, as predicted by both accounts. However, only the object-file account was able to explain why it was easier to report two targets on the same moving object compared to the same targets on distinct objects. The interference of different masks on target recognition was also easier to predict by the object-file account than by an SF filter. The methods introduced here allowed us to investigate attention to hierarchical levels and to object-files within the same empirical framework. The data suggests that SF information is used to structure the internal organization of object representations, a process understood best by integrating object-file theory with previous models of hierarchical perception.
Project description:Disruption of circadian rhythms increases the risk of several types of cancer. Mammalian cryptochromes (CRY1 and CRY2) are circadian transcriptional repressors that are related to DNA-repair enzymes. While CRYs lack DNA-repair activity, they modulate the transcriptional response to DNA damage, and CRY2 can promote SKP1 cullin 1-F-box (SCF)FBXL3-mediated ubiquitination of c-MYC and other targets. Here, we characterize five mutations in CRY2 observed in human cancers in The Cancer Genome Atlas. We demonstrate that two orthologous mutations of mouse CRY2 (D325H and S510L) accelerate the growth of primary mouse fibroblasts expressing high levels of c-MYC. Neither mutant affects steady-state levels of overexpressed c-MYC, and they have divergent impacts on circadian rhythms and on the ability of CRY2 to interact with SCFFBXL3 Unexpectedly, stable expression of either CRY2 D325H or of CRY2 S510L robustly suppresses P53 target-gene expression, suggesting that this may be a primary mechanism by which they influence cell growth.
Project description:With the latest release of the S2PLOT graphics library, embedding interactive, 3-dimensional (3-d) scientific figures in Adobe Portable Document Format (PDF) files is simple, and can be accomplished without commercial software. In this paper, we motivate the need for embedding 3-d figures in scholarly articles. We explain how 3-d figures can be created using the S2PLOT graphics library, exported to Product Representation Compact (PRC) format, and included as fully interactive, 3-d figures in PDF files using the movie15 LaTeX package. We present new examples of 3-d PDF figures, explain how they have been made, validate them, and comment on their advantages over traditional, static 2-dimensional (2-d) figures. With the judicious use of 3-d rather than 2-d figures, scientists can now publish, share and archive more useful, flexible and faithful representations of their study outcomes. The article you are reading does not have embedded 3-d figures. The full paper, with embedded 3-d figures, is recommended and is available as a supplementary download from PLoS ONE (File S2).
Project description:Disruption of circadian rhythms increases the risk of several types of cancer. Mammalian cryptochromes (CRY1 and CRY2) are circadian transcriptional repressors that are related to DNA repair enzymes. While CRYs lack DNA repair activity, they modulate the transcriptional response to DNA damage, and CRY2 can promote SCFFBXL3-mediated ubiquitination of c-MYC and other targets. Here, we characterize five mutations in CRY2 observed in human cancers in The Cancer Genome Atlas. We demonstrate that two orthologous mutations of mouse CRY2 (D325H and S510L) accelerate the growth of primary mouse fibroblasts expressing high levels of c-MYC. Neither mutant affects steady state levels of overexpressed c-MYC, and they have divergent impacts on circadian rhythms and on the ability of CRY2 to interact with SCFFBXL3. Unexpectedly, stable expression of either CRY2 D325H or of CRY2 S510L robustly suppresses P53 target gene expression, suggesting that this is the primary mechanism by which they influence cell growth.