Figure 4C HA@PPCDQ induces CD4+ effector memory T cells (TCM, CD62L+CD44+) generation at 2 weeks after boost vaccination.
Ontology highlight
ABSTRACT: C57BL/6 mice (n = 6) were immunized with PPCDQ nanovaccines or soluble protein, respectively. Splenocytes were isolated at 14 days post-boost and stained with cocktails of T cell surface markers for FCM analysis.
Project description:Naïve CD44-lo/CD62L-hi/CD8+ T cells from C3H.SW mice were compared to CD44-hi/CD82L-lo/CD8+ effector memory T cells and CD44-lo/CD62L-hi/CD8+ postmitotic T cells, using 3 biological replicates of each type of sample. The later two cells types were highly purified at day 14 after transplantation from GVHD B6/SJL mice receiving donor C3H.SW mouse-derived naive CD44-lo/CD62L-hi/CD8+ T cells and T cell-depleted bone marrow. Recipient mice had first been lethally irradiated at a dose of 10Gy in two fractions. This is a MHC-identical minor histocompatibility antigen-mismatched mouse GVHD model of human allogeneic hematopoietic stem cell transplantation. Naive T cell samples were from pools of 2 mice each, while effector memory and postmitotic T cell samples were purified from pools of T cells from 4 mice each. After RNA extraction and cleanup, biotin labeled cRNA was prepared from 600 ng total RNA, using two rounds of in vitro transcription, and hybridized to Affymetrix Mouse Genome 430A 2.0 arrays using standard techniques. Keywords: Cell type comparison 9 samples were analyzed on 9 Affymetrix microarrays to assay mRNA levels. There were 3 biological replicates of each of 3 different cell types.
Project description:Naïve CD44-lo/CD62L-hi/CD8+ T cells from C3H.SW mice were compared to CD44-hi/CD82L-lo/CD8+ effector memory T cells and CD44-lo/CD62L-hi/CD8+ postmitotic T cells, using 3 biological replicates of each type of sample. The later two cells types were highly purified at day 14 after transplantation from GVHD B6/SJL mice receiving donor C3H.SW mouse-derived naive CD44-lo/CD62L-hi/CD8+ T cells and T cell-depleted bone marrow. Recipient mice had first been lethally irradiated at a dose of 10Gy in two fractions. This is a MHC-identical minor histocompatibility antigen-mismatched mouse GVHD model of human allogeneic hematopoietic stem cell transplantation. Naive T cell samples were from pools of 2 mice each, while effector memory and postmitotic T cell samples were purified from pools of T cells from 4 mice each. After RNA extraction and cleanup, biotin labeled cRNA was prepared from 600 ng total RNA, using two rounds of in vitro transcription, and hybridized to Affymetrix Mouse Genome 430A 2.0 arrays using standard techniques. Keywords: Cell type comparison
Project description:Vaccine developmental strategies are utilizing antigens encapsulated in biodegradable polymeric nanoparticles. Here, we developed a Chlamydia nanovaccine (PLGA-rMOMP) by encapsulating its recombinant major outer membrane protein (rMOMP) in the extended-releasing and self-adjuvanting PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. PLGA-rMOMP was small (nanometer size), round and smooth, thermally stable, and exhibited a sustained release of rMOMP. Stimulation of mouse primary dendritic cells (DCs) with PLGA-rMOMP augmented endosome processing, induced Th1 cytokines (IL-6 and IL-12p40), and expression of MHC-II and co-stimulatory (CD40, CD80, and CD86) molecules. BALB/c mice immunized with PLGA-rMOMP produced enhanced CD4+ T-cells-derived memory (CD44high CD62Lhigh), and effector (CD44high CD62Llow) phenotypes and functional antigen-specific serum IgG antibodies. In vivo biodistribution of PLGA-rMOMP revealed its localization within lymph nodes, suggesting migration from the injection site via DCs. Our data provide evidence that the PLGA (85:15) nanovaccine activates DCs and augments Chlamydia-specific rMOMP adaptive immune responses that are worthy of efficacy testing.