Project description:Propolis is a resin produced by bees from raw material collected from plants, salivary secretions, and beeswax. New therapeutic properties for the Central Nervous System have emerged. We explored the neurobehavioral and antioxidant effects of an ethanolic extract of yellow propolis (EEYP) rich in triterpenoids, primarily lupeol and ?-amyrin. Male Wistar rats, 3 months old, were intraperitoneally treated with Tween 5% (control), EEYP (1, 3, 10, and 30?mg/kg), or diazepam, fluoxetine, and caffeine (positive controls) 30?min before the assays. Animals were submitted to open field, elevated plus maze, forced swimming, and inhibitory avoidance tests. After behavioral tasks, blood samples were collected through intracardiac pathway, to evaluate the oxidative balance. The results obtained in the open field and in the elevated plus maze assay showed spontaneous locomotion preserved and anxiolytic-like activity. In the forced swimming test, EEYP demonstrated antidepressant-like activity. In the inhibitory avoidance test, EEYP showed mnemonic activity at 30?mg/kg. In the evaluation of oxidative biochemistry, the extract reduced the production of nitric oxide and malondialdehyde without changing level of total antioxidant, catalase, and superoxide dismutase, induced by behavioral stress. Our results highlight that EEYP emerges as a promising anxiolytic, antidepressant, mnemonic, and antioxidant natural product.
Project description:ObjectivesThis study was conducted to evaluate the effect of ethanolic extract of propolis on antibacterial and microshear bond strength of glass ionomer restorations to dentin.Materials and methodsConventional glass ionomer cement (Equia forte, GC Tokyo, Japan), resin-modified glass ionomer (Fuji II LC, GC Tokyo, Japan) and propolis powder (dried extract from honey bees) materials were used in this study. Both conventional glass ionomer and resin-modified glass ionomer were modified by two different concentrations of ethanolic extract of propolis (10 % and 25 % EEP). For antibacterial test, Streptococcus mutans strain was spread on agar petri dishes using a sterile swab. Discs of both glass ionomer restorative materials (without adding EEP, with 10 % EEP and with 25 % EEP) were fabricated within the agar plates. Antibacterial activity was evaluated by measuring the inhibition zones around each disc. For microshear bond strength test, 60 healthy human permanent molars were prepared by cutting occlusal surface and expose the dentin at the height of contour of all teeth then conditioned using poly acrylic acid conditioner, both glass ionomer restorative materials (without adding EEP, with 10 % EEP and with 25 % EEP) were mixed and applied on conditioned dentin surface by using tygon tube. Microshear bond strength was evaluated by the universal testing machine.ResultsTwo-way ANOVA test revealed that both glass ionomer type and different concentrations of EEP had significant effect on the antibacterial test results and microshear bond strength values (p < 0,05). Glass ionomer restorative material with 25%EEP had the highest antibacterial values whereas glass ionomer restorative material without modifications (control groups) had the lowest values. Resin-modified glass ionomer without any modification (control group) had the highest bond strength while resin-modified glass ionomer with 25%EEP had the lowest bond strength.ConclusionsIncorporation of ethanolic extract of propolis to glass ionomer restorative material increases the antibacterial effects of both conventional GIC and RMGI. Inspite of this advantage, it seems that it has deleterious effect on microshear bond strength to dentin.
Project description:In the present study, the chemical composition and the in vitro antimicrobial and antibiofilm activity of an ethanolic extract of propolis (EEP) from Tunisia against different ATCC and wild bacterial strains were evaluated. In situ antimicrobial activity and sensory influence of different EEP concentrations (0.5% and 1%), also in combination with 1% vinegar, were evaluated in chilled vacuum-packed salmon tartare. Furthermore, a challenge test was performed on salmon tartare experimentally contaminated with Listeria monocytogenes and treated with the different EEP formulations. The in vitro antimicrobial and antibiofilm activity was observed only against Gram-positive bacteria, such as L. monocytogenes and S. aureus, both ATCC and wild. Results of the in situ analyses revealed significant antimicrobial activity against aerobic colonies, lactic acid bacteria, Enterobacteriaceae and Pseudomonas spp. only when the EEP was used at 1% and in combination with 1% vinegar. The 1% EEP in combination with 1% vinegar was the most effective treatment also against L. monocytogenes, although 0.5% and 1% EEP used alone also showed antilisterial effects. After 7 days of storage, the sensory influence on odor, taste and color of salmon tartare was negligible for all EEP formulations. In this background, results obtained confirmed the antimicrobial efficacy of propolis which could be proposed as a suitable biopreservative to ensure safety and improve the quality of food.
Project description:Propolis is a complex mixture of natural sticky and resinous components produced by honeybees from living plant exudates. Globally, research has been dedicated to studying the biological properties and chemical composition of propolis from various geographical and climatic regions. However, the chemical data and biological properties of Mexican brown propolis are scant. The antioxidant activity of the ethanolic extract of propolis (EEP) sample collected in México and the isolated compounds is described. Cytotoxic activity was evaluated in a central nervous system and cervical cancer cell lines. Cytotoxicity of EEP was evaluated in a C6 cell line and cervical cancer (HeLa, SiHa, and CasKi) measured by the 3-(3,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium (MTT) assay. The antibacterial activity was tested using the minimum inhibitory concentration (MIC) assay. Twelve known compounds were isolated and identified by nuclear magnetic resonance spectroscopy (NMR). Additionally, forty volatile compounds were identified by means of headspace-solid phase microextraction with gas chromatography and mass spectrometry time of flight analysis (HS-SPME/GC-MS-TOF). The main volatile compounds detected include nonanal (18.82%), α-pinene (12.45%), neryl alcohol (10.13%), and α-pinene (8.04%). EEP showed an anti-proliferative effect on glioma cells better than temozolomide, also decreased proliferation and viability in cervical cancer cells, but its effectiveness was lower compared to cisplatin.