Project description:The specificity of RNAi pathways is determined by several classes of small RNAs, which include siRNAs, piRNAs, endo-siRNAs, and microRNAs (miRNAs). These small RNAs are invariably incorporated into large Argonaute (Ago)-containing effector complexes known as RNA-induced silencing complexes (RISCs), which they guide to silencing targets. Both genetic and biochemical strategies have yielded conserved molecular components of small RNA biogenesis and effector machineries. However, given the complexity of these pathways, there are likely to be additional components and regulators that remain to be uncovered. We have undertaken a comparative and comprehensive RNAi screen to identify genes that impact three major Ago-dependent small RNA pathways that operate in Drosophila S2 cells. We identify subsets of candidates that act positively or negatively in siRNA, endo-siRNA, and miRNA pathways. Our studies indicate that many components are shared among all three Argonaute-dependent silencing pathways, though each is also impacted by discrete sets of genes.
Project description:Drosophila microRNAs (miRNAs) and small interfering RNAs (siRNAs) are generally produced by different Dicer enzymes (Dcr-1 and Dcr-2) and sorted to functionally distinct Argonaute effectors (AGO1 and AGO2). However, there is cross talk between these pathways, as highlighted by the recognition that Drosophila miRNA* strands (the partner strands of mature miRNAs) are generated by Dcr-1 but are preferentially sorted to AGO2. Here, we show that a component of the siRNA loading complex, R2D2, is essential both to load endogenously encoded siRNAs (endo-siRNAs) into AGO2 and to prevent endo-siRNAs from binding to AGO1. Northern blot analysis and deep sequencing showed that in the r2d2 mutant, all classes of endo-siRNAs were unable to load AGO2 and instead accumulated in the AGO1 complex. Such redirection was specific to endo-siRNAs and was not observed with miRNA* strands. We observed functional consequences of altered sorting in RNA interference (RNAi) mutants, since endo-siRNAs generated from cis-natural antisense transcripts (cis-NAT-siRNA) exhibited evidence for biased maturation as single strands in AGO1 according to thermodynamic asymmetry and a hairpin-derived endo-siRNA formed cleavage-competent complexes with AGO1 upon mutation of r2d2. Finally, we demonstrated a direct role for the R2D2/Dcr-2 heterodimer in sensing central mismatch positions that direct miRNA* strands to AGO2. Together, these data reveal new roles of R2D2 in organizing small RNA networks in Drosophila.
Project description:RNA interference (RNAi) based methods are being developed for pest management. A few products for control of coleopteran pests are expected to be commercialized soon. However, variability in RNAi efficiency among insects is preventing the widespread use of this technology. In this study, we conducted research to identify reasons for variability in RNAi efficiency among thirty-seven (37) insects belonging to five orders. Studies on double-stranded RNA (dsRNA) degradation by dsRNases and processing of labeled dsRNA to siRNA showed that both dsRNA degradation and processing are variable among insects belonging to different orders as well as among different insect species within the same order. We identified homologs of key RNAi genes in the genomes of some of these insects and studied their domain architecture. These data suggest that dsRNA digestion by dsRNases and its processing to siRNAs in the cells are among the major factors contributing to differential RNAi efficiency reported among insects.
Project description:Small non-coding RNAs, including miRNAs, and gene silencing mediated by RNA interference have been described in free-living and parasitic lineages of flatworms, but only few key factors of the small RNA pathways have been exhaustively investigated in a limited number of species. The availability of flatworm draft genomes and predicted proteomes allowed us to perform an extended survey of the genes involved in small non-coding RNA pathways in this phylum.Overall, findings show that the small non-coding RNA pathways are conserved in all the analyzed flatworm linages; however notable peculiarities were identified. While Piwi genes are amplified in free-living worms they are completely absent in all parasitic species. Remarkably all flatworms share a specific Argonaute family (FL-Ago) that has been independently amplified in different lineages. Other key factors such as Dicer are also duplicated, with Dicer-2 showing structural differences between trematodes, cestodes and free-living flatworms. Similarly, a very divergent GW182 Argonaute interacting protein was identified in all flatworm linages. Contrasting to this, genes involved in the amplification of the RNAi interfering signal were detected only in the ancestral free living species Macrostomum lignano. We here described all the putative small RNA pathways present in both free living and parasitic flatworm lineages.These findings highlight innovations specifically evolved in platyhelminths presumably associated with novel mechanisms of gene expression regulation mediated by small RNA pathways that differ to what has been classically described in model organisms. Understanding these phylum-specific innovations and the differences between free living and parasitic species might provide clues to adaptations to parasitism, and would be relevant for gene-silencing technology development for parasitic flatworms that infect hundreds of million people worldwide.
Project description:Eukaryotic cells regulate 5'-triphosphorylated RNAs (ppp-RNAs) to promote cellular functions and prevent recognition by antiviral RNA sensors. For example, RNA capping enzymes possess triphosphatase domains that remove the γ phosphates of ppp-RNAs during RNA capping. Members of the closely related PIR-1 (phosphatase that interacts with RNA and ribonucleoprotein particle 1) family of RNA polyphosphatases remove both the β and γ phosphates from ppp-RNAs. Here, we show that C. elegans PIR-1 dephosphorylates ppp-RNAs made by cellular RNA-dependent RNA polymerases (RdRPs) and is required for the maturation of 26G-RNAs, Dicer-dependent small RNAs that regulate thousands of genes during spermatogenesis and embryogenesis. PIR-1 also regulates the CSR-1 22G-RNA pathway and has critical functions in both somatic and germline development. Our findings suggest that PIR-1 modulates both Dicer-dependent and Dicer-independent Argonaute pathways and provide insight into how cells and viruses use a conserved RNA phosphatase to regulate and respond to ppp-RNA species.
Project description:RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects.
Project description:Multicellular eukaryotes produce small RNA molecules (approximately 21-24 nucleotides) of two general types, microRNA (miRNA) and short interfering RNA (siRNA). They collectively function as sequence-specific guides to silence or regulate genes, transposons, and viruses and to modify chromatin and genome structure. Formation or activity of small RNAs requires factors belonging to gene families that encode DICER (or DICER-LIKE [DCL]) and ARGONAUTE proteins and, in the case of some siRNAs, RNA-dependent RNA polymerase (RDR) proteins. Unlike many animals, plants encode multiple DCL and RDR proteins. Using a series of insertion mutants of Arabidopsis thaliana, unique functions for three DCL proteins in miRNA (DCL1), endogenous siRNA (DCL3), and viral siRNA (DCL2) biogenesis were identified. One RDR protein (RDR2) was required for all endogenous siRNAs analyzed. The loss of endogenous siRNA in dcl3 and rdr2 mutants was associated with loss of heterochromatic marks and increased transcript accumulation at some loci. Defects in siRNA-generation activity in response to turnip crinkle virus in dcl2 mutant plants correlated with increased virus susceptibility. We conclude that proliferation and diversification of DCL and RDR genes during evolution of plants contributed to specialization of small RNA-directed pathways for development, chromatin structure, and defense.
Project description:Transposable elements (TEs) can alter host gene structure and expression, whereas host organisms develop mechanisms to repress TE activities. In the nematode Caenorhabditis elegans, a small interfering RNA pathway dependent on the helicase ERI-6/7 primarily silences retrotransposons and recent genes of likely viral origin. By studying gene expression variation among wild C. elegans strains, we found that structural variants and transposon remnants likely underlie expression variation in eri-6/7 and the pathway targets. We further found that multiple insertions of the DNA transposons, Polintons, reshuffled the eri-6/7 locus and induced inversion of eri-6 in some wild strains. In the inverted configuration, gene function was previously shown to be repaired by unusual trans-splicing mediated by direct repeats. We identified that these direct repeats originated from terminal inverted repeats of Polintons. Our findings highlight the role of host-transposon interactions in driving rapid host genome diversification among natural populations and shed light on evolutionary novelty in genes and splicing mechanisms.
Project description:RNA interference (RNAi) is a common eukaryotic gene regulation process driven by small RNA effectors. Mechanisms that govern regulatory small noncoding RNA behavior have been extensively described in only a handful of organisms, which suggests that the most effective RNAi approach in many organisms, such as insect pests, remains to be determined. Taking advantage of advances in high-throughput sequencing, characterization of small RNA molecules can be achieved through bioinformatic approaches without the need for genetic experiments. This chapter describes pipelines for characterizing three main classes of small RNAs (microRNAs, small-interfering RNAs, and piwi-associated RNAs) using computationally determined small RNA biogenesis signatures. Obtaining information regarding the abundance of different small RNA classes through these pipelines will lead to a better-informed RNAi strategy, thereby identifying the most efficacious approach for RNAi.
Project description:miRNA and other forms of small RNAs are known to regulate many biological processes. Single-cell small RNA sequencing can be used to profile small RNAs of individual cells; however, limitations of efficiency and scale prevent its widespread application. Here, we developed parallel single-cell small RNA sequencing (PSCSR-seq), which can overcome the limitations of existing methods and enable high-throughput small RNA expression profiling of individual cells. Analysis of PSCSR-seq data indicated that diverse cell types could be identified based on patterns of miRNA expression, and showed that miRNA content in nuclei is informative (for example, cell type marker miRNAs can be detected in isolated nuclei). PSCSR-seq is very sensitive: analysis of only 732 peripheral blood mononuclear cells (PBMCs) detected 774 miRNAs, whereas bulk small RNA analysis would require input RNA from approximately 106 cells to detect as many miRNAs. We identified 42 miRNAs as markers for PBMC subpopulations. Moreover, we analyzed the miRNA profiles of 9,533 cells from lung cancer biopsies, and by dissecting cell subpopulations, we identified potentially diagnostic and therapeutic miRNAs for lung cancers. Our study demonstrates that PSCSR-seq is highly sensitive and reproducible, thus making it an advanced tool for miRNA analysis in cancer and life science research.