ABSTRACT: This SuperSeries is composed of the following subset Series: GSE17816: Somatic Mutation Screen of Clear Cell RCC I GSE17818: Somatic Mutation Screen of Clear Cell RCC II Systematic somatic mutation screening of 4000 genes in human clear cell renal cell carcinoma. Information on corresponding somatic mutations in each sample can be found at http://www.sanger.ac.uk/genetics/CGP/Studies/.
Project description:This SuperSeries is composed of the following subset Series: GSE17816: Somatic Mutation Screen of Clear Cell RCC I GSE17818: Somatic Mutation Screen of Clear Cell RCC II Systematic somatic mutation screening of 4000 genes in human clear cell renal cell carcinoma. Information on corresponding somatic mutations in each sample can be found at http://www.sanger.ac.uk/genetics/CGP/Studies/.
Project description:Systematic somatic mutation screening of 4000 genes in human clear cell renal cell carcinoma. Information on corresponding somatic mutations in each sample can be found at http://www.sanger.ac.uk/genetics/CGP/Studies/. These samples were run at a different facility than VARI - scmmlab.com Correlating gene expression profiling with mutational status
Project description:Systematic somatic mutation screening of 4000 genes in human clear cell renal cell carcinoma. Information on corresponding somatic mutations in each sample can be found at http://www.sanger.ac.uk/genetics/CGP/Studies/. Correlating gene expression profiling with mutational status
Project description:Systematic somatic mutation screening of 4000 genes in human clear cell renal cell carcinoma. Information on corresponding somatic mutations in each sample can be found at http://www.sanger.ac.uk/genetics/CGP/Studies/.
Project description:Systematic somatic mutation screening of 4000 genes in human clear cell renal cell carcinoma. Information on corresponding somatic mutations in each sample can be found at http://www.sanger.ac.uk/genetics/CGP/Studies/. These samples were run at a different facility than VARI - scmmlab.com
Project description:Patients with advanced or malignant renal cell carcinoma at the time of diagnosis have historically had a poor prognosis. Immunonologic agents have significantly altered the therapeutic landscape and clinical outcomes of these patients. In this review, we highlight recent and upcoming clinical trials investigating the role of immunotherapies in clear cell RCC. In particular, we emphasize immunotherapy-based combinations, including immune checkpoint inhibitor (ICI) combinations, neoadjuvant, and adjuvant ICI, and ICI agents combined with anti-VEGF therapy.
Project description:ObjectiveTo evaluate whether bilateral, multifocal clear cell renal cell carcinoma (ccRCC) patients can be differentiated by VHL mutation analysis into cases that represent either multiple independently arising primary tumors, or a single primary tumor which has spread ipsilaterally as well as to the contralateral kidney. The nature of kidney cancer multifocality outside of known hereditary syndromes is as yet poorly understood.Materials and methodsDNA from multiple tumors per patient were evaluated for somatic VHL gene mutation and hypermethylation. A subset of tumors with shared VHL mutations were analyzed with targeted, next-generation sequencing assays.ResultsThis cohort contained 5 patients with multiple tumors that demonstrated a shared somatic VHL mutation consistent with metastatic spread including to the contralateral kidney. In several cases this was substantiated by additional shared somatic mutations in ccRCC-associated genes. In contrast, the remaining 14 patients with multiple tumors demonstrated unique, unshared VHL alterations in every analyzed tumor, consistent with independently arising kidney tumors. None of these latter patients showed any evidence of local spread or distant metastasis.ConclusionThe spectrum of VHL alterations within evaluated bilateral, multifocal ccRCC tumors from a single patient can distinguish between multiple independent tumor growth and metastasis. This can be performed using currently available clinical genetic tests and will improve the accuracy of patient diagnosis and prognosis, as well as informing appropriate management.