Project description:Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity. We used microarrays to find gene expression patterns associated with drug response and also identified genes regulated by the MAP kinase pathway 6 pancreatic cell lines were injected into the pancreas of nude mice and treated either with vehicle control or PD0325901 for 12 plus 12 hours.
Project description:Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity. We used microarrays to find gene expression patterns associated with drug response and also identified genes regulated by the MAP kinase pathway 22 pancreatic cell lines were grown in culture media containing serum and either treated with vehicle control or CI-1040 for 24 hours
Project description:Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity. We used microarrays to find gene expression patterns associated with drug response and also identified genes regulated by the MAP kinase pathway
Project description:Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity. We used microarrays to find gene expression patterns associated with drug response and also identified genes regulated by the MAP kinase pathway 6 pancreatic cell lines were injected into the pancreas of nude mice and treated either with vehicle control or PD0325901 for 12 plus 12 hours.
Project description:Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity. We used microarrays to find gene expression patterns associated with drug response and also identified genes regulated by the MAP kinase pathway
Project description:Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity. We used microarrays to find gene expression patterns associated with drug response and also identified genes regulated by the MAP kinase pathway 22 pancreatic cell lines were grown in culture media containing serum and either treated with vehicle control or CI-1040 for 24 hours
Project description:Background & aimsThe oncogene MDM2, which encodes an E3 ubiquitin ligase, is overexpressed in pancreatic cancers and is therefore a therapeutic target. Current inhibitors of MDM2 target the interaction between MDM2 and P53; these would have no effect on cancer cells that do not express full-length P53, including many pancreatic cancer cells. We searched for a compound that specifically inhibits MDM2 itself.MethodsWe performed a virtual screen and structure-based design to identify specific inhibitors of MDM2. We tested the activities of compounds identified on viability, proliferation, and protein levels of HPAC, Panc-1, AsPC-1, and Mia-Paca-2 pancreatic cancer cell lines. We tested whether intraperitoneal injections of one of the compounds identified affected growth of xenograft tumors from Panc-1 cells, or orthotopic tumors from Panc-1 and AsPC-1 cells (injected into pancreata), in nude mice.ResultsWe identified a compound, called SP141, which bound directly to MDM2, promoting its auto-ubiquitination and degradation by the proteasome. The compound reduced levels of MDM2 in pancreatic cancer cell lines, as well as their proliferation, with 50% inhibitory concentrations <0.5 μM (0.38-0.50 μM). Increasing concentrations of SP141 induced increasing levels of apoptosis and G2-M-phase arrest of pancreatic cancer cell lines, whether or not they expressed functional P53. Injection of nude mice with SP141 (40 mg/kg/d) inhibited growth of xenograft tumors (by 75% compared with control mice), and led to regression of orthotopic tumors.ConclusionsIn a screen for specific inhibitors of MDM2, we identified a compound called SP141 that reduces levels of MDM2 in pancreatic cancer cell lines, as well as their proliferation and ability to form tumors in nude mice. SP141 is a new class of MDM2 inhibitor that promotes MDM2 auto-ubiquitination and degradation. It might be further developed as a therapeutic agent for pancreatic cancer.
Project description:The phosphatidylinositol-3-kinase (PI3K)/Akt signalling pathway is frequently deregulated in pancreatic cancers, and is believed to be an important determinant of their biological aggression and drug resistance. NVP-BEZ235 is a novel, dual class I PI3K/mammalian target of rapamycin (mTor) inhibitor undergoing phase I human clinical trials. To simulate clinical testing, the effects of NVP-BEZ235 were studied in five early passage primary pancreatic cancer xenografts, grown orthotopically. These tumours showed activated PKB/Akt, and increased levels of at least one of the receptor tyrosine kinases that are commonly activated in pancreatic cancers. Pharmacodynamic effects were measured following acute single doses, and anticancer effects were determined in separate groups following chronic drug exposure. Acute oral dosing with NVP-BEZ235 strongly suppressed the phosphorylation of PKB/Akt, followed by recovery over 24 h. There was also inhibition of Ser235/236 S6 ribosomal protein and Thr37/46 4E-BP1, consistent with the effects of NVP-BEZ235 as a dual PI3K/mTor inhibitor. Chronic dosing with 45 mg kg(-1) of NVP-BEZ235 was well tolerated, and produced significant tumour growth inhibition in three models. These results predict that agents targeting the PI3K/Akt/mTor pathway might have anticancer activity in pancreatic cancer patients, and support the testing of combination studies involving chemotherapy or other molecular targeted agents.