Analysis of mutations in the putative nuclear localization sequence of interleukin-1 beta.
Ontology highlight
ABSTRACT: Previous studies have shown that, after receptor-mediated endocytosis, interleukin-1 alpha (IL1 alpha) and interleukin-1 beta (IL1 beta) are translocated to the nucleus, where they appear to accumulate. It has been suggested that nuclear translocation may be involved in the biological responsiveness of target cells to IL1 stimulation. The human IL1 beta molecule contains a seven-amino-acid sequence (-Pro208-Lys-Lys-Lys-Met-Glu-Lys-) that shows some sequence identity with the nuclear localization sequence of the simian-virus-40 large T-antigen. The effects of point mutations within this putative nuclear localization sequence on IL1 beta binding, receptor-mediated endocytosis and biological activity have been characterized. Mutants M49 (Lys210----Ala), M50 (Lys211----Ala) and M51 (Pro208----Ala) all retained the ability to bind to the IL1 receptor, albeit with lower affinity than the wild-type molecules. However, mutants M49, M50 and M51 showed greater biological potency than wild-type IL1 alpha or IL1 beta, as measured by the induction of IL2 secretion. However, receptor-mediated endocytosis and nuclear accumulation of M50 were comparable with those in the wild-type. These observations suggest that the putative nuclear localization sequence may play an important role in the generation of biological responses to IL1 stimulation, even though it may not influence internalization of the ligand.
Project description:Karyopherinbeta (Kapbeta) proteins bind nuclear localization and export signals (NLSs and NESs) to mediate nucleocytoplasmic trafficking, a process regulated by Ran GTPase through its nucleotide cycle. Diversity and complexity of signals recognized by Kap betas have prevented prediction of new Kap beta substrates. The structure of Kap beta 2 (also known as Transportin) bound to one of its substrates, the NLS of hnRNP A1, that we report here explains the mechanism of substrate displacement by Ran GTPase. Further analyses reveal three rules for NLS recognition by Kap beta 2: NLSs are structurally disordered in free substrates, have overall basic character, and possess a central hydrophobic or basic motif followed by a C-terminal R/H/KX(2-5)PY consensus sequence. We demonstrate the predictive nature of these rules by identifying NLSs in seven previously known Kap beta 2 substrates and uncovering 81 new candidate substrates, confirming five experimentally. These studies define and validate a new NLS that could not be predicted by primary sequence analysis alone.
Project description:PurposeThe photoreceptor-specific orphan nuclear receptor NR2E3 is a key regulator of transcriptional events during photoreceptor differentiation in mammalian retina. Mutations in NR2E3 are associated with enhanced S-cone syndrome and related retinal phenotypes that reveal characteristic excess of S-cone function. This study was undertaken to determine biochemical as well as functional consequences of reported sequence variants and disease-causing mutations in NR2E3.MethodsTwenty-five different mutations in the wild-type NR2E3 expression construct were generated by site-directed mutagenesis and performed nuclear localization, gel-shift, rhodopsin promoter activity assays, and co-immunoprecipitation in cultured mammalian cells.ResultsOf the 25 mutant proteins, 15 mislocalize at least partially to the cytoplasm. Eight of the nine changes in the DNA-binding domain (DBD) and 12 of the 14 mutations in the ligand-binding domain (LBD) of NR2E3 exhibited reduced DNA-binding and transcriptional activation of the rhodopsin promoter. Moreover, these mutations dramatically altered the interaction of NR2E3 with NRL as well as with CRX. Two NR2E3 variants between DBD and LBD showed no effect on any biochemical or functional parameter tested.ConclusionsThese data provide a better understanding of sequence variants, validate disease-causing mutations, and demonstrate the significance of DBD and LBD in mediating NR2E3 function. These studies contribute to molecular mechanisms underlying retinal phenotypes caused by NR2E3 mutations.
Project description:The transcription factor PDX1 plays a critical role during β-cell development and in glucose-induced insulin gene transcription in adult β-cells. Acute glucose exposure leads to translocalization of PDX1 to the nucleoplasm, whereas under conditions of oxidative stress, PDX1 shuttles from the nucleus to the cytosol. Here we show that cytosolic PDX1 expression correlated with β-cell failure in diabetes. In isolated islets from patients with type 2 diabetes and from diabetic mice, we found opposite regulation of insulin and PDX1 mRNA; insulin was decreased in diabetes, but PDX1 was increased. This suggests that elevated PDX1 mRNA levels may be insufficient to regulate insulin. In diabetic islets, PDX1 protein was localized in the cytosol, whereas in non-diabetic controls, PDX1 was in the nucleus. In contrast, overexpression of either IL-1 receptor antagonist or shuttling-deficient PDX1 restored β-cell survival and function and PDX1 nuclear localization. Our results show that nuclear localization of PDX1 is essential for a functional β-cell and provides a novel mechanism of the protective effect of IL-1 receptor antagonist on β-cell survival and function.
Project description:Glycogen synthase kinase-3?(GSK-3?), which is a member of the serine/threonine kinase family, has been shown to be crucial for cellular survival, differentiation, and metabolism. Here, we present evidence that GSK-3? is associated with the karyopherin ?2 (Kap ?2) (102-kDa), which functions as a substrate for transportation into the nucleus. A potential PY-NLS motif ((109)IVRLRYFFY(117)) was observed, which is similar with the consensus PY NLS motif (R/K/H)X(2-5)PY in the GSK-3? catalytic domain. Using a pull down approach, we observed that GSK-3? physically interacts with Kap ?2 both in vivo and in vitro. Secondly, GSK-3? and Kap ?2 were shown to be co-localized by confocal microscopy. The localization of GSK-3? to the nuclear region was disrupted by putative Kap ?2 binding site mutation. Furthermore, in transient transfection assays, the Kap ?2 binding site mutant induced a substantial reduction in the in vivo serine/threonine phosphorylation of GSK-3?, where- as the GSK-3? wild type did not. Thus, our observations indicated that Kap ?2 imports GSK-3? through its putative PY NLS motif from the cytoplasm to the nucleus and increases its kinase activity.
Project description:Proteins with nuclear localization sequences (NLSs) are directed into the cell nucleus through interactions between the NLS and importin proteins. NLSs are generally short motifs rich in basic amino acids; however, identifying NLSs can be challenging due to the lack of a universally conserved sequence. In this study, we characterized the sequence specificity of an essential and conserved NLS in Mcm3, a subunit of the replicative DNA helicase. Through mutagenesis and AlphaFold 3 (AF3) modeling, we demonstrate that the precise positioning of basic residues within the NLS is critical for nuclear transport of Mcm3 through optimal interactions with importin. Disrupting these interactions impairs the nuclear import of Mcm3, resulting in defective chromatin loading of MCM and poor cell growth. Our results provide a structure-guided framework for predicting and analyzing monopartite NLSs, which, despite lacking a single consensus sequence, retain key characteristics shared between the NLSs of Mcm3 and the SV40 large T antigen.
Project description:Proteins with nuclear localization sequences (NLSs) are directed into the cell nucleus through interactions between the NLS and importin proteins. NLSs are generally short motifs rich in basic amino acids; however, identifying NLSs can be challenging due to the lack of a universally conserved sequence. In this study, we characterized the sequence specificity of an essential and conserved NLS in Mcm3, a subunit of the replicative DNA helicase. Through mutagenesis and AlphaFold 3 (AF3) modeling, we demonstrate that the precise positioning of basic residues within the NLS is critical for nuclear transport of Mcm3 through optimal interactions with importin. Disrupting these interactions impairs the nuclear import of Mcm3, resulting in defective chromatin loading of the MCM complex and poor cell growth. Our results provide a structure-guided framework for predicting and analyzing monopartite NLSs, which, despite lacking a single consensus sequence, retain key characteristics shared between the NLSs of Mcm3 and the SV40 large T antigen.
Project description:The histone chaperone nucleosome assembly protein 1 (NAP1) is implicated in histone shuttling as well as nucleosome assembly and disassembly. Under physiological conditions, NAP1 dimers exist in a mixture of various high-molecular-weight oligomers whose size may be regulated by the cell cycle-dependent concentration of NAP1. Both the functional and structural significance of the observed oligomers are unknown. We have resolved the molecular mechanism by which yeast NAP1 (yNAP1) dimers oligomerize by applying x-ray crystallographic, hydrodynamic, and functional approaches. We found that an extended beta-hairpin that protrudes from the compact core of the yNAP1 dimer forms a stable beta-sheet with beta-hairpins of neighboring yNAP1 dimers. Disruption of the beta-hairpin (whose sequence is conserved among NAP1 proteins in various species) by the replacement of one or more amino acids with proline results in complete loss of yNAP1 dimer oligomerization. The in vitro functions of yNAP1 remain unaffected by the mutations. We have thus identified a conserved structural feature of NAP1 whose function, in addition to presenting the nuclear localization sequence, appears to be the formation of higher-order oligomers.
Project description:The C-terminal fragment of the c-Met receptor tyrosine kinase is present in the nuclei of some cells irrespective of ligand stimulation, but the responsible nuclear localization signal (NLS) has not been previously reported. Here, we report that two histidine residues separated by a 10-amino-acid spacer (H1068-H1079) located in the juxtamembrane region of c-Met function as a putative novel NLS. Deletion of these sequences significantly abolished the nuclear translocation of c-Met, as did substitution of the histidines with alanines. This substitution also decreased the association of c-Met fragment with importin β. The putative NLS of c-Met is unique in that it relies on histidines, whose positive charge changes depending on pH, rather than the lysines or arginines, commonly found in classical bipartite NLSs, suggesting the possible 'pH-dependency' of this NLS. Indeed, decreasing the cytosolic pH either with nigericin, an Na(+)/H(+) exchanger or pH 6.5 KRB buffer significantly increased the level of nuclear c-Met and the interaction of the c-Met fragment with importin β, indicating that low pH itself enhanced nuclear translocation. Consistent with this, nigericin treatment also increased the nuclear level of endogenous c-Met in HeLa cells. The putative aberrant bipartite NLS of c-Met seems to be the first example of what we call a 'pH-dependent' NLS.
Project description:Influenza viruses deliver their genome into the nucleus of infected cells for replication. This process is mediated by the viral nucleoprotein (NP), which contains two nuclear localization sequences (NLSs): NLS1 at the N-terminus and a recently identified NLS2 (212GRKTR216). Through mutagenesis and functional studies, we demonstrated that NP must have both NLSs for an efficient nuclear import. As with other NLSs, there may be variations in the basic residues of NLS2 in different strains of the virus, which may affect the nuclear import of the viral genome. Although all NLS2 variants fused to the GFP mediated nuclear import of GFP, bioinformatics showed that 98.8% of reported NP sequences contained either the wild-type sequence 212GRKTR216 or 212GRRTR216. Bioinformatics analyses used to study the presence of NLS2 variants in other viral and nuclear proteins resulted in very low hits, with only 0.4% of human nuclear proteins containing putative NLS2. From these, we studied the nucleolar protein 14 (NOP14) and found that NLS2 does not play a role in the nuclear import of this protein but in its nucleolar localization. We also discovered a functional NLS at the C-terminus of NOP14. Our findings indicate that NLS2 is a highly conserved influenza A NP sequence.
Project description:The tumor suppressor activity of maspin (mammary serine protease inhibitor) has been associated with its nuclear localization. In this study we explore the regulation of maspin nuclear translocation. An in vitro nuclear import assay suggested that maspin can passively enter the nucleus. However, in silico analysis identified a putative maspin nuclear localization signal (NLS), which was able to mediate the nuclear translocation of a chimeric protein containing this NLS fused to five green fluorescent protein molecules in tandem (5GFP). Dominant-negative Ran-GTPase mutants RanQ69L or RanT24N suppressed this process. Unexpectedly, the full-length maspin fused to 5GFP failed to enter the nucleus. As maspin's putative NLS is partially hidden in its three-dimensional structure, we suggest that maspin nuclear transport could be conformationally regulated. Our results suggest that maspin nuclear translocation involves both passive and active mechanisms.