Induction of cytochrome P-450 in cultured rat hepatocytes. The heterogeneous localization of specific isoenzymes using immunocytochemistry.
Ontology highlight
ABSTRACT: Primary cultures of rat hepatocytes were exposed to phenobarbitone, clofibric acid, beta-naphthoflavone, isosafrole or dexamethasone for 3 days, and the induction of several cytochrome P-450 isoenzymes was demonstrated by increased catalytic activity, by Western blotting and by immunocytochemistry. The profiles of isoenzymes induced in vitro were compared with those induced in liver microsomes of rats dosed with the same agents. Clofibric acid, an agent which has not been thoroughly investigated previously, was shown to induce both in vivo and in vitro several P-450 isoenzymes normally inducible by phenobarbitone (PB1a, PB3a and PB3b) or steroids (PB2c). Immunocytochemical studies demonstrated that the inducible isoenzymes of cytochrome P-450 are not distributed evenly throughout the hepatocyte population, and increasing concentrations of phenobarbitone or beta-naphthoflavone in the medium results in an increasing proportion of 'induced' cells. However, whereas maximal concentrations of beta-naphthoflavone resulted in virtually all cells containing induced levels of MC1b, a maximal concentration of phenobarbitone resulted in only 30% of the cells containing induced levels of PB3a/PB3b. These results are discussed in relation to the heterogeneous distribution and induction of cytochrome P-450 in the intact liver.
Project description:The induction of 5-aminolaevulinate synthase and of cytochrome P-450 by short-chain aliphatic alcohols was compared in primary cultures of chicken-embryo hepatocytes. Isopropyl alcohol, isobutanol, pentan-1-ol and isopentanol alone caused up to a 4-fold increase in 5-aminolaevulinate synthase, whereas ethanol and propan-1-ol did not. Induction of the synthase by isopentanol was maximal at 8 h, and reached a plateau thereafter, whereas the activity induced by 2-propyl-2-isopropylacetamide continued to increase for 20 h. In the presence of 3,4,3',4'-tetrachlorobiphenyl, an inhibitor of haem synthesis at the uroporphyrinogen decarboxylase step, synergistic induction of 5-aminolaevulinate synthase was observed with all the alcohols except ethanol. Ethanol, but not isopentanol, decreased the extent of induction of 5-aminolaevulinate synthase by 2-propyl-2-isopropylacetamide and 3,4,3',4'-tetrachlorobiphenyl (50% decrease at 112 mM-ethanol). Total protein synthesis was not inhibited by ethanol in these cells. The composition of porphyrins was determined after treatment of cells with ethanol, isopentanol or 2-propyl-2-isopropylacetamide. Untreated cells, when incubated with 5-aminolaevulinate for 6 h, accumulated mainly protoporphyrin. However, when cells were pretreated with ethanol, isopentanol or 2-propyl-2-isopropylacetamide for 20 h, and 5-aminolaevulinate was added, 8- and 7-carboxyporphyrins increased, whereas protoporphyrin decreased. The dose responses for induction of either 5-aminolaevulinate synthase or cytochrome P-450 after a 20 h exposure to 3- to 5-carbon alcohols were identical. The results indicate that: simple alcohols can induce both enzymes; hydrophobicity increases their effectiveness; and induction of both enzymes are probably mediated by a common mechanism.
Project description:We have defined conditions that permit quantitative and specific measurement of the metabolism of the major phenobarbital-inducible form of cytochrome P-450 protein in primary non-proliferating monolayer cultures of adult rat hepatocytes. Isolated antibodies specifically directed against phenobarbital cytochrome P-450 are used to immunoprecipitate the cytochrome from lysates of cultured hepatocytes pulse-labelled with [(3)H]leucine. Phenobarbital cytochrome P-450 protein is then isolated from the immunoprecipitate by electrophoresis on polyacrylamide gradient slab gels. Specificity of the assay for phenobarbital cytochrome P-450 was established by competition experiments involving other forms of purified cytochrome P-450 as well as by testing antibodies directed against these other forms of the cytochrome. Using purified phenobarbital cytochrome P-450, radiolabelled in both its haem and apoprotein portions, as an internal standard, we demonstrated that, with this immunoassay, recovery of cytochrome P-450 from microsomal samples is nearly complete. Basal rates of synthesis of phenobarbital cytochrome P-450 representing as little as 0.02-0.05% of total cellular protein synthesis were reliably and reproducibly detected in hepatocyte culture maintained in serum-free medium for 72h. Moreover, inclusion of phenobarbital in the culture medium for 96h stimulated not only synthesis de novo of phenobarbital cytochrome P-450 protein, but also accumulation of spectrally and catalytically active cytochrome P-450. Advantages of this immunoassay are that metabolism (synthesis or degradation) of the haem or protein of this important form of the cytochrome can be measured conveniently in the small samples available from cultured cells without the necessity of preparing subcellular fractions.
Project description:Mouse hepatic parenchymal cells (HPCs) have become the most frequently used in vitro model to study mechanisms of acetaminophen (APAP)-induced hepatotoxicity. It is universally accepted that APAP hepatocellular injury requires bioactivation by cytochromes P450 (P450s), but this remains unproven in primary mouse HPCs in vitro, especially over the wide range of concentrations that have been employed in published reports. The aim of this work was to test the hypothesis that APAP-induced hepatocellular death in vitro depends solely on P450s. We evaluated APAP cytotoxicity and APAP-protein adducts (a biomarker of metabolic bioactivation by P450) using primary mouse HPCs in the presence and absence of a broad-spectrum inhibitor of P450s, 1-aminobenzotriazole (1-ABT). 1-ABT abolished formation of APAP-protein adducts at all concentrations of APAP (0-14 mM), but eliminated cytotoxicity only at small concentrations (≦5 mM), indicating the presence of a P450-independent mechanism at larger APAP concentrations. P450-independent cell death was delayed in onset relative to toxicity observed at smaller concentrations. p-Aminophenol was detected in primary mouse HPCs exposed to large concentrations of APAP, and a deacetylase inhibitor [bis (4-nitrophenyl) phosphate (BNPP)] significantly reduced cytotoxicity. In conclusion, APAP hepatocellular injury in vitro occurs by at least two mechanisms, a P450-dependent mechanism that operates at concentrations of APAP ≦ 5 mM and a P450-independent mechanism that predominates at larger concentrations and is slower in onset. p-Aminophenol most likely contributes to the latter mechanism. These findings should be considered in interpreting results from APAP cytotoxicity studies in vitro and in selecting APAP concentrations for use in such studies.
Project description:The role of haem synthesis during induction of hepatic cytochrome P-450 haemoproteins was studied in chick embryo in ovo and in chick embryos hepatocytes cultured under chemically defined conditions. 1. Phenobarbitone caused a prompt increase in the activity of 5-aminolaevulinate synthase, the rate-limiting enzyme of haem biosynthesis, and in the concentration of cytochrome P-450. This induction response occurred without measurable initial destruction of the haem moiety of cytochrome P-450. 2. When intracellular haem availability was enhanced by exogenous haem or 5-aminolaevulinate, phenobarbitone-medicated induction of cytochrome P-450 was not affected in spite of the well known repression of 5-aminolaevulinate synthase by haem. These data are consistent with the concept that haem does not regulate the synthesis of cytochrome P-450 haemoproteins. 3. Acetate inhibited haem biosynthesis at the level of 5-aminolaevulinate formation. When intracellular haem availability was diminished by treatment with acetate, phenobarbitone-medicated induction was decreased. 4. This inhibitory effect of acetate on cytochrome P-450 induction was reversed by exogenous haem or its precursor 5-aminolaevulinate. These data suggest that inhibition of haem biosynthesis does not decrease synthesis of apo-cytochrome P-450. Moreover, they indicate that exogenous haem can be incorporated into newly formed aop-cytochrome P-450.
Project description:We have studied the extent to which mouse renal cytochrome P-450 isoenzymes are sexually differentiated, and the factor(s) regulating this dimorphism. Intriguingly, sex differences were not seen in the expression of a single cytochrome P-450 enzyme, but were observed in the expression of all P-450 isoenzymes detectable, encoded by six gene families or sub-families. This effect was mediated by testosterone, which had the capacity to both induce and repress P-450 gene expression, and which was independent of growth hormone. The changes in protein content were mirrored in all but one case by changes in the levels of mRNA, indicating that these genes contain hormone-responsive elements. These findings are consistent with numerous reports of sex differences in the susceptibility of the mouse kidney to the toxic and carcinogenic effects of drugs and environmental chemicals, many of which are metabolized to cytotoxic products by the cytochrome P-450-dependent mono-oxygenases. These data imply that circulating androgen levels will be an important factor in susceptibility of the kidney to toxic or carcinogenic compounds which require metabolic activation.
Project description:Cytochrome P450 (CYP) proteins constitute a large ancient family of oxidative enzymes essential for the efficient elimination of a wide variety of clinically used drugs. Polymorphic variants of human CYP2D6 are associated with the conversion rate and efficacy of several drugs such as antidepressants. Polymorphisms of the canine orthologue CYP2D15 are of interest because these antidepressants are also used in dogs with behavioral problems and the outcome of the treatment is variable. However, the annotated CYP2D15 gene is incomplete and inaccurately assembled in CanFam3.1, hampering DNA sequence analysis of the gene in individual dogs. We elucidated the complete exon-intron structure of CYP2D15 to enable comprehensive genotyping of the gene using genomic DNA. We surveyed variations of the gene in four diverse dog breeds and identified novel polymorphisms in exon 2 in border collies. Further investigation to establish the impact of these canine CYP2D15 polymorphisms on interindividual variability in expression and function of this metabolizing enzyme is now feasible. Further knowledge of CYP pharmacogenetics will help individualize therapy and thereby increase therapeutic efficacy, especially in the use of antidepressants in veterinary behavioral medicine.
Project description:The treatment of rats for 4 days with phenobarbital causes an apparent 3-fold increase in the amount of total liver cytochrome P-450. By sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, metyrapone binding and immunoprecipitation, this increase was found to be due to a much larger increase in a restricted number of specific cytochrome P-450 variants. A radioimmunoassay technique demonstrated that the major phenobarbital-inducible variant, of molecular weight 52 000, is induced 24-fold by phenobarbital. Immunoprecipitation analysis of products of translation in vitro with an antibody specific to the 52 000-mol.wt. cytochrome P-450 showed that phenobarbital induces the mRNA in polyribosomes for this variant 20-fold. Evidence is presented for the action of phenobarbital at the transcriptional and translational levels.
Project description:Hypolipidaemic drugs induce peroxisomal proliferation in the liver and many induce the formation of the hepatic endoplasmic reticulum in general and the formation of cytochrome P-450 in particular. We have induced the formation of rat liver microsomal cytochrome P-450 by the administration of the hypolipidaemic drug clofibrate, isolated the endoplasmic reticulum, solubilized the cytochrome P-450 from these membranes and subdivided the cytochrome P-450 into four fractions by the use of hydrophobic, anionic, cationic and adsorption chromatography. One of these fractions (cytochrome P-450 fraction 1) was highly purified to a specific content of 17nmol of cytochrome P-450/mg of protein and the protein was active in a reconstituted enzyme system towards the 12- and 11-hydroxylation of the fatty acid, dodecanoic (lauric) acid, with preferential activity towards the 12-hydroxy metabolite. This reconstituted activity was absolutely dependent on NADPH, NADPH-cytochrome P-450 reductase and cytochrome P-450, indicating the role of the mixed-function oxidase system in the metabolism of lauric acid. Another fraction of the haemoprotein (cytochrome P-450 fraction 2) preferentially formed 11-hydroxylauric acid, whereas a third fraction (cytochrome P-450 fraction 3) exhibited only trace laurate oxidase activity and was similar to the phenobarbitone form of the haemoprotein in that these last two cytochromes rapidly turned-over the drug benzphetamine. The molecular weights and spectral properties of these cytochrome P-450 fractions are reported, along with the phenobarbitone-induced form of the enzyme and the nature of the cytochrome(s) induced by clofibrate pretreatment are discussed in the terms of possible haemoprotein heterogeneity.
Project description:Voltage-gated sodium channels are responsible for the rising phase of the action potential in cardiac muscle. Previously, both TTX-sensitive neuronal sodium channels (NaV1.1, NaV1.2, NaV1.3, NaV1.4 and NaV1.6) and the TTX-resistant cardiac sodium channel (NaV1.5) have been detected in cardiac myocytes, but relative levels of protein expression of the isoforms were not determined. Using a quantitative approach, we analyzed z-series of confocal microscopy images from individual mouse myocytes stained with either anti-NaV1.1, anti-NaV1.2, anti-NaV1.3, anti-NaV1.4, anti-NaV1.5, or anti-NaV1.6 antibodies and calculated the relative intensity of staining for these sodium channel isoforms. Our results indicate that the TTX-sensitive channels represented approximately 23% of the total channels, whereas the TTX-resistant NaV1.5 channel represented 77% of the total channel staining in mouse ventricular myocytes. These ratios are consistent with previous electrophysiological studies in mouse ventricular myocytes. NaV1.5 was located at the cell surface, with high density at the intercalated disc, but was absent from the transverse (t)-tubular system, suggesting that these channels support surface conduction and inter-myocyte transmission. Low-level cell surface staining of NaV1.4 and NaV1.6 channels suggest a minor role in surface excitation and conduction. Conversely, NaV1.1 and NaV1.3 channels are localized to the t-tubules and are likely to support t-tubular transmission of the action potential to the myocyte interior. This quantitative immunocytochemical approach for assessing sodium channel density and localization provides a more precise view of the relative importance and possible roles of these individual sodium channel protein isoforms in mouse ventricular myocytes and may be applicable to other species and cardiac tissue types.
Project description:Subunit 5 of Saccharomyces cerevisiae cytochrome c oxidase (CcO) is essential for assembly and has two isoforms, 5A and 5B. 5A is expressed under normoxic conditions, whereas 5B is expressed at very low oxygen tensions. As a consequence, COX5A-deleted strains (Δcox5A) have no or only low levels of CcO under normoxic conditions rendering them respiratory deficient. Previous studies have reported that respiratory growth could be restored by combining Δcox5A with mutations of ROX1 that encodes a repressor of COX5B expression. In these mutants, 5B isoenzyme expression level was 30-50% of wild-type (5A isoenzyme) and exhibited a maximum catalytic activity up to 3-fold faster than that of 5A isoenzyme. To investigate the origin of this effect, we constructed a mutant strain in which COX5B replaced COX5A downstream of the COX5A promoter. This strain expressed wild-type levels of the 5B isoenzyme, without the complication of additional effects caused by mutation of ROX1. When produced this way, the isoenzymes displayed no significant differences in their maximum catalytic activities or in their affinities for oxygen or cytochrome c. Hence the elevated activity of the 5B isoenzyme in the rox1 mutant is not caused simply by exchange of isoforms and must arise from an additional effect that remains to be resolved.