Mammalian inositol monophosphatase: the identification of residues important for the binding of Mg2+ and Li+ ions using fluorescence spectroscopy and site-directed mutagenesis.
Ontology highlight
ABSTRACT: The fluorescence properties of residue Trp-219 in inositol monophosphatase are sensitive to the ionization of neighbouring groups. The pH-dependent changes in the fluorescence emission intensity and wavelength of maximum emission appear to arise as the result of two separate ionizations in the proximity of Trp-219, namely due to the ionization of His-217 and Cys-218. By studying the curve of fluorescence intensity against pH, given by the mutants Cys-218-->Ala or His-217-->Gln, the pK of His-217 was determined to be 7.54 and the pK of Cys-218 was estimated to be about 8.2. These mutants have altered kinetic parameters for catalytic Mg2+ ions and inhibitory Mg2+ and Li+ ions. The Cys-218-->Ala mutant enzyme is not subject to inhibition by concentrations of Mg2+ ions up to 400 mM and has a specific activity of 156% of the maximum obtainable activity of the native enzyme. The His-217-->Gln mutant enzyme shows reduced sensitivity to inhibition by Mg2+ and Li+ ions, and has a specific activity of 110% of that obtainable for the native enzyme.
Project description:1. Bovine inositol monophosphatase reacts with thiol reagents such as 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), N-ethylmaleimide (NEM) and iodoacetic acid (IAA). 2. Modification by NEM results in nearly total loss of enzyme activity, whereas modification by IAA causes a slight increase in activity. 3. The loss of activity caused by NEM can be prevented by the inclusion of Ins1P, or better Ins1P and LiCl in the reaction mixture. 4. Two equivalents of p-nitrothiobenzoate (NTB2-) are released from the native enzyme on reaction with DTNB, and six equivalents of NTB2- are released from the SDS-denatured enzyme, suggesting that none of the six cysteine residues per molecule of enzyme is involved in intra- or inter-molecular disulphide bridges. 5. Both NEM and IAA react with two cysteine residues (residues 141 and 184 in the sequence) in a mutually exclusive manner. 6. NEM also reacts stoichiometrically with residue 218. 7. The NEM-induced loss of enzyme activity is accompanied by a 15% decrease in protein fluorescence. 8. A mutant of the enzyme which has an Ala-218 replacement for Cys-218 has full activity and is not sensitive to NEM, showing that the modification of this cysteine by NEM causes inhibition of the native protein by steric effects and that Cys-218 is not essential for activity.
Project description:Haemonchus contortus (H. contortus) is one of the most important parasites of small ruminants, especially goats and sheep. The complex life cycle of this nematode is a main obstacle for the control and prevention of haemonchosis. So far, a special form of arrested development called diapause different from the dauer stage in Caenorhabditis elegans (C. elegans) has been found in many parasitic nematodes. In our previous study, we have characterized a novel gene Hc-daf-22 from H. contortus sharing high homology with Ce-daf-22 and functional analysis showed this gene has similar biological function with Ce-daf-22. In this study, Hc-daf-22 mutants were constructed using site-directed mutagenesis, and carried out rescue experiments, RNA interference (RNAi) experiments and in vitro enzyme activity analysis with the mutants to further explore the precise function site of Hc-DAF-22. The results showed that Hc-daf-22 mutants could be expressed in the rescued ok693 worms and the expression positions were mainly in the intestine which was identical with that of Hc-daf-22 rescued worms. Through lipid staining we found that Hc-daf-22 could rescue daf-22 mutant (ok693) from the fatty acid metabolism deficiency while Hc-daf-22 mutants failed. Brood size and body length analyses in rescue experiment along with body length and life span analyses in RNAi experiment elucidated that Hc-daf-22 resembled Ce-daf-22 in effecting the development and capacity of C. elegans and mutants impaired the function of Hc-daf-22. Together with the protease activity assay, this research revealed three important active resides 84C/299H/349H in Hc-DAF-22 by site-directed mutagenesis.
Project description:Plantacyclin B21AG is a circular bacteriocin produced by Lactiplantibacillus plantarum B21 which displays antimicrobial activity against various Gram-positive bacteria including foodborne pathogens, Listeria monocytogenes and Clostridium perfringens. It is a 58-amino acid cyclised antimicrobial peptide, with the N and C termini covalently linked together. The circular peptide backbone contributes to remarkable stability, conferring partial proteolytic resistance and structural integrity under a wide temperature and pH range. Here, we report the first crystal structure of a circular bacteriocin from a food grade Lactobacillus. The protein was crystallised using the hanging drop vapour diffusion method and the structure solved to a resolution of 1.8 Å. Sequence alignment against 18 previously characterised circular bacteriocins revealed the presence of conserved charged and aromatic residues. Alanine substitution mutagenesis validated the importance of these residues. Minimum inhibitory concentration analysis of these Ala mutants showed that Phe8Ala and Trp45Ala mutants displayed a 48- and 32-fold reduction in activity, compared to wild type. The Lys19Ala mutant displayed the weakest activity, with a 128-fold reduction. These experiments demonstrate the relative importance of aromatic and cationic residues for the antimicrobial activity of plantacyclin B21AG and by extension, other circular bacteriocins sharing these evolutionarily conserved residues.
Project description:MotivationMutating residues into alanine (alanine scanning) is one of the fastest experimental means of probing hypotheses about protein function. Alanine scans can reveal functional hot spots, i.e. residues that alter function upon mutation. In vitro mutagenesis is cumbersome and costly: probing all residues in a protein is typically as impossible as substituting by all non-native amino acids. In contrast, such exhaustive mutagenesis is feasible in silico.ResultsPreviously, we developed SNAP to predict functional changes due to non-synonymous single nucleotide polymorphisms. Here, we applied SNAP to all experimental mutations in the ASEdb database of alanine scans; we identi.ed 70% of the hot spots (>or=1 kCal/mol change in binding energy); more severe changes were predicted more accurately. Encouraged, we carried out a complete all-against-all in silico mutagenesis for human glucokinase. Many of the residues predicted as functionally important have indeed been con.rmed in the literature, others await experimental veri.cation, and our method is ready to aid in the design of in vitro mutagenesis.AvailabilityASEdb and glucokinase scores are available at http://www.rostlab.org/services/SNAP. For submissions of large/whole proteins for processing please contact the author.
Project description:N(5)-CAIR synthetase, an essential enzyme in microorganisms, converts 5-aminoimidazole ribonucleotide (AIR) and bicarbonate to N(5)-CAIR with the aid of ATP. Previous X-ray crystallographic analyses of Aspergillus clavatus N(5)-CAIR synthetase postulated that R271, H273, and K353 were important for bicarbonate binding and for catalysis. As reported here, site-directed mutagenesis of these residues revealed that R271 and H273 are, indeed, critical for bicarbonate binding and catalysis whereas all K353 mutations, even ones conservative in nature, are inactive. Studies on the R271K mutant protein revealed cooperative substrate inhibition for ATP with a Ki of 1.2 mM. Kinetic investigation of the H273A mutant protein indicated that it was cooperative with respect to AIR; however, this effect was not seen in either the wild-type or any of the other mutant proteins. Cooperative ATP-dependent inhibition of wild-type N(5)-CAIR synthetase was also detected with ATP displaying a Ki of 3.3 mM. Taken together, these results indicate that N(5)-CAIR synthetase operates maximally within a narrow concentration of ATP.
Project description:Redox active cysteine residues including ?Cys93 are part of hemoglobin's "oxidation hotspot". Irreversible oxidation of ?Cys93 ultimately leads to the collapse of the hemoglobin structure and release of heme. Human fetal hemoglobin (HbF), similarly to the adult hemoglobin (HbA), carries redox active ?Cys93 in the vicinity of the heme pocket. Site-directed mutagenesis has been used in this study to examine the impact of removal and/or addition of cysteine residues in HbF. The redox activities of the recombinant mutants were examined by determining the spontaneous autoxidation rate, the hydrogen peroxide induced ferric to ferryl oxidation rate, and irreversible oxidation of cysteine by quantitative mass spectrometry. We found that substitution of ?Cys93Ala resulted in oxidative instability characterized by increased oxidation rates. Moreover, the addition of a cysteine residue at ?19 on the exposed surface of the ?-chain altered the regular electron transfer pathway within the protein by forming an alternative oxidative site. This may also create an accessible site for di-sulfide bonding between Hb subunits. Engineering of cysteine residues at suitable locations may be useful as a tool for managing oxidation in a protein, and for Hb, a way to stave off oxidation reactions resulting in a protein structural collapse.
Project description:HDC (L-histidine decarboxylase), the enzyme responsible for the catalytic production of histamine from L-histidine, belongs to an evolutionarily conserved family of vitamin B6-dependent enzymes known as the group II decarboxylases. Yet despite the obvious importance of histamine, mammalian HDC enzymes remain poorly characterized at both the biochemical and structural levels. By comparison with the recently described crystal structure of the homologous enzyme L-DOPA decarboxylase, we have been able to identify a number of conserved domains and motifs that are important also for HDC catalysis. This includes residues that were proposed to mediate events within the active site, and HDC proteins carrying mutations in these residues were inactive when expressed in reticulocyte cell lysates reactions. Our studies also suggest that a significant change in quartenary structure occurs during catalysis. This involves a protease sensitive loop, and incubating recombinant HDC with an L-histidine substrate analogue altered enzyme structure so that the loop was no longer exposed for tryptic proteolysis. In total, 27 mutant proteins were used to test the proposed importance of 34 different amino acid residues. This is the most extensive mutagenesis study yet to identify catalytically important residues in a mammalian HDC protein sequence and it provides a number of novel insights into the mechanism of histamine biosynthesis.
Project description:Stopped-flow fluorescence spectroscopy has been used to determine the on-rate (kass) and the off-rate (kdiss) for the equilibrium between inositol monophosphatase and Mg2+ ions. The dissociation constant (Kd) for the equilibrium calculated from these constants suggests that the ions interact at site 1 on the enzyme with a Kd typically around 450 microM, close to values determined by equilibrium studies (270-300 microM). The affinity of this site on the wild-type enzyme for Mg2+ ions increases as the pH is increased. This is mediated almost entirely by change in the rate kdiss. A slow increase occurs in the fluorescence intensity of the pyrene-labelled enzyme after the initial, fast, increase in fluorescence caused by the binding of the Mg2+ ion. The rate of this change is independent of the concentration of the metal ion, implying that it may be a structural change in the enzyme-Mg2+ complex. Neither the fast nor the slow change in fluorescence intensity occurs when enzyme subjected to limited proteolysis by trypsin, which removes the N-terminal 36 residues, is mixed with Mg2+ ions. The data suggest that interaction with Mg2+ ions at a high-affinity site leads to a structural change in inositol monophosphatase. The data further confirm the importance of the presence of two metal ions in the structure/function of this enzyme, and show that the binding of the metal ions is not competitive with that of H+ ions and that the variation in Kd with pH is mediated almost totally by changes in kdiss.
Project description:Transposition (the movement of discrete segments of DNA, resulting in rearrangement of genomic DNA) initiates when transposase forms a dimeric DNA-protein synaptic complex with transposon DNA end sequences. The synaptic complex is a prerequisite for catalytic reactions that occur during the transposition process. The transposase-DNA interactions involved in the synaptic complex have been of great interest. Here we undertook a study to verify the protein-DNA interactions that lead to synapsis in the Tn5 system. Specifically, we studied (i) Arg342, Glu344, and Asn348 and (ii) Ser438, Lys439, and Ser445, which, based on the previously published cocrystal structure of Tn5 transposase bound to a precleaved transposon end sequence, make cis and trans contacts with transposon end sequence DNA, respectively. By using genetic and biochemical assays, we showed that in all cases except one, each of these residues plays an important role in synaptic complex formation, as predicted by the cocrystal structure.
Project description:Vif is essential for HIV-1 replication in T cells and macrophages. Vif recruits a host ubiquitin ligase complex to promote proteasomal degradation of the APOBEC3 restriction factors by poly-ubiquitination. The cellular transcription cofactor CBFβ is required for Vif function by stabilizing the Vif protein and promoting recruitment of a cellular Cullin5-RING ubiquitin ligase complex. Interaction between Vif and CBFβ is a promising therapeutic target, but little is known about the interfacial residues. We now demonstrate that Vif conserved residues E88/W89 are crucial for CBFβ binding. Substitution of E88/W89 to alanines impaired binding to CBFβ, degradation of APOBEC3, and virus infectivity in the presence of APOBEC3 in single-cycle infection. In spreading infection, NL4-3 with Vif E88A/W89A mutation replicated comparably to wild-type virus in permissive CEM-SS cells, but not in multiple APOBEC3 expressing non-permissive CEM cells. These results support a model in which HIV-1 Vif residues E88/W89 may participate in binding CBFβ.