Abnormalities in the erythrocyte membrane in acute lymphoid leukaemia.
Ontology highlight
ABSTRACT: Erythrocytes from patients suffering from acute lymphoid leukaemia (ALL) show decreased proportions of spectrin tetrameters and altered spatial distribution of band 4.1 and ankyrins. These abnormalities of the cytoskeleton are probably responsible for altered membrane fluidity and transbilayer distribution of phosphatidylethanolamine in ALL. ALL is associated with severe anaemia and usually, but not always, with overproduction of lymphocytes. To our knowledge, this is the first report of abnormalities in the erythrocyte membrane in ALL which may, in part, be responsible for the observed anaemia.
Project description:Chromosomal aberrations are a hallmark of acute lymphoid leukaemia (ALL) but alone fail to induce leukaemia. To identify cooperating oncogenic lesions, we performed genome-wide analysis of leukaemic blasts from 242 paediatric ALL patients using high-resolution single nucleotide polymorphism arrays and genomic DNA sequencing. Our analyses revealed deletion, amplification, point mutation and structural rearrangement in genes encoding key regulators of B lymphocyte development and differentiation in 40% of B-progenitor ALL. PAX5 was the most frequent target of somatic mutation, being altered in 31.7% of cases. The identified PAX5 mutations resulted in haploinsufficiency or the generation of hypomorphic alleles. Deletions were also detected in E2A, EBF, LEF1, Ikaros, and Aiolos. These findings demonstrate that direct disruption of pathways controlling B cell development and differentiation contributes to B-progenitor ALL pathogenesis. Moreover, these data demonstrate the power of high-resolution, genome-wide approaches to identify critical new molecular lesions in cancer. Keywords: disease state analysis *** Due to privacy concerns, the primary SNP array data is no longer available with unrestricted access. Individuals wishing to obtain this data for research purposes may request access using the Web links below. ***
Project description:Acute lymphoblastic leukaemia occurs in both children and adults but its incidence peaks between 2 and 5 years of age. Causation is multifactorial and exogenous or endogenous exposures, genetic susceptibility, and chance have roles. Survival in paediatric acute lymphoblastic leukaemia has improved to roughly 90% in trials with risk stratification by biological features of leukaemic cells and response to treatment, treatment modification based on patients' pharmacodynamics and pharmacogenomics, and improved supportive care. However, innovative approaches are needed to further improve survival while reducing adverse effects. Prognosis remains poor in infants and adults. Genome-wide profiling of germline and leukaemic cell DNA has identified novel submicroscopic structural genetic changes and sequence mutations that contribute to leukaemogenesis, define new disease subtypes, affect responsiveness to treatment, and might provide novel prognostic markers and therapeutic targets for personalised medicine.
Project description:For several decades, few substantial therapeutic advances have been made for patients with acute myeloid leukaemia. However, since 2017 unprecedented growth has been seen in the number of drugs available for the treatment of acute myeloid leukaemia, with several new drugs receiving regulatory approval. In addition to advancing our therapeutic armamentarium, an increased understanding of the biology and genomic architecture of acute myeloid leukaemia has led to refined risk assessment of this disease, with consensus risk stratification guidelines now incorporating a growing number of recurrent molecular aberrations that aid in the selection of risk-adapted management strategies. Despite this promising recent progress, the outcomes of patients with acute myeloid leukaemia remain unsatisfactory, with more than half of patients ultimately dying from their disease. Enrolment of patients into clinical trials that evaluate novel drugs and rational combination therapies is imperative to continuing this progress and further improving the outcomes of patients with acute myeloid leukaemia.
Project description:Cholesterol-rich microdomains are membrane dynamic compartments characterized by specific lipid and protein composition and present in all cell types. These assemblies are involved in several biological processes, including infection by intracellular pathogens. This work provides a comprehensive analysis of the composition and organization of human erythrocyte membrane microdomains
Project description:This study aimed to evaluate the influence of acute and chronic exercise on erythrocyte membrane stability and various blood indices in a population consisting of five national-level male swimmers, over 18 weeks of training. The evaluations were made at the beginning and end of the 1st, 7th, 13th and 18th weeks, when volume and training intensity have changed. The effects manifested at the beginning of those weeks were considered due to chronic adaptations, while the effects observed at the end of the weeks were considered due to acute manifestations of the exercise load of that week. Acute changes resulting from the exercise comprised increases in creatine kinase activity (CK) and leukocyte count (Leu), and decrease in hematocrit (Ht) and mean corpuscular volume (MCV), at the end of the first week; increase in the activities of CK and lactate dehydrogenase (LDH), in the uric acid (UA) concentration and Leu count, at the end of the seventh week; increases in CK and LDH activities and in the mean corpuscular hemoglobin concentration (MCHC), at the end of the 13th week; and decrease in the value of the osmotic stability index 1/H50 and increases in the CK activity and platelets (Plt) count, at the end of the 18th week. Chronic changes due to training comprised increase in the values of 1/H50, CK, LDH, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), serum iron (Fe), MCV and Plt. Although acute training has resulted in decrease in the osmotic stability of erythrocytes, possibly associated with exacerbation of the oxidative processes during intense exercise, chronic training over 18 weeks resulted in increased osmotic stability of erythrocytes, possibly by modulation in the membrane cholesterol content by low and high density lipoproteins.
Project description:Although acute myeloid leukaemia (AML) has long been recognized for its morphological and cytogenetic heterogeneity, recent high-resolution genomic profiling has demonstrated a complexity even greater than previously imagined. This complexity can be seen in the number and diversity of genetic alterations, epigenetic modifications, and characteristics of the leukaemic stem cells. The broad range of abnormalities across different AML subtypes suggests that improvements in clinical outcome will require the development of targeted therapies for each subtype of disease and the design of novel clinical trials to test these strategies. It is highly unlikely that further gains in long-term survival rates will be possible by mere intensification of conventional chemotherapy. In this review, we summarize recent studies that provide new insight into the genetics and biology of AML, discuss risk stratification and therapy for this disease, and profile some of the therapeutic agents currently under investigation.
Project description:After the first proposed model of the red blood cell membrane skeleton 36 years ago, several additional proteins have been discovered during the intervening years, and their relationship with the pathogenesis of the related disorders have been somewhat defined. The knowledge of erythrocyte membrane structure is important because it represents the model for spectrin-based membrane skeletons in all cells and because defects in its structure underlie multiple hemolytic anemias. This review summarizes the main features of erythrocyte membrane disorders, dividing them into structural and altered permeability defects, focusing particularly on the most recent advances. New proteins involved in alterations of the red blood cell membrane permeability were recently described. The mechanoreceptor PIEZO1 is the largest ion channel identified to date, the fundamental regulator of erythrocyte volume homeostasis. Missense, gain-of-function mutations in the PIEZO1 gene have been identified in several families as causative of dehydrated hereditary stomatocytosis or xerocytosis. Similarly, the KCNN4 gene, codifying the so called Gardos channel, has been recently identified as a second causative gene of hereditary xerocytosis. Finally, ABCB6 missense mutations were identified in different pedigrees of familial pseudohyperkalemia. New genomic technologies have improved the quality and reduced the time of diagnosis of these diseases. Moreover, they are essential for the identification of the new causative genes. However, many questions remain to solve, and are currently objects of intensive studies.
Project description:Bloom syndrome (BS) is an inherited genomic instability disorder caused by disruption of the BLM helicase and confers an extreme cancer predisposition. Here we report on a girl with BS who developed acute lymphoblastic leukaemia (ALL) at age nine, and treatment-related acute myeloid leukaemia (t-AML) aged 12. She was compound heterozygous for the novel BLM frameshift deletion c.1624delG and the previously described c.3415C>T nonsense mutation. Two haematological malignancies in a child with BS imply a fundamental role for BLM for normal haematopoiesis, in particular in the presence of genotoxic stress.
Project description:Chromosomal abnormalities are established prognostic markers in adult ALL. We assessed the prognostic impact of established chromosomal abnormalities and key copy number alterations (CNA) among 652 patients with B-cell precursor ALL treated on a modern MRD driven protocol. Patients with KMT2A-AFF1, complex karyotype (CK) and low hypodiploidy/near-triploidy (HoTr) had high relapse rates 50%, 60% & 53% and correspondingly poor survival. Patients with BCR-ABL1 had an outcome similar to other patients. JAK-STAT abnormalities (CRLF2, JAK2) occurred in 6% patients and were associated with a high relapse rate (56%). Patients with ABL-class fusions were rare (1%). A small group of patients with ZNF384 fusions (n = 12) had very good survival. CNA affecting IKZF1, CDKN2A/B, PAX5, BTG1, ETV6, EBF1, RB1 and PAR1 were assessed in 436 patients. None of the individual deletions or profiles were associated with survival, either in the cohort overall or within key subgroups. Collectively these data indicate that primary genetic abnormalities are stronger prognostic markers than secondary deletions. We propose a revised UKALL genetic risk classification based on key established chromosomal abnormalities: (1) very high risk: CK, HoTr or JAK-STAT abnormalities; (2) high risk: KMT2A fusions; (3) Tyrosine kinase activating: BCR-ABL1 and ABL-class fusions; (4) standard risk: all other patients.
Project description:Acute Myeloid Leukaemia (AML) carries a 5 year survival rate of just 24%. Toxic chemotherapy regimens remain the backbone of standard of care for AML. The FLT3 tyrosine kinase is a recognised AML oncogene, with FLT3 activating mutations occurring in approximately one third of all AML patients. However, therapeutic targeting of FLT3 has proven difficult as monotherapy, with the development of drug resistance and relapse. Characterisation of the signalling pathways regulated by mutant FLT3 is required to identify better therapeutic strategies.