Degradation of proteoglycan aggregate by a cartilage metalloproteinase. Evidence for the involvement of stromelysin in the generation of link protein heterogeneity in situ.
Ontology highlight
ABSTRACT: Cartilage proteoglycan aggregates were subjected to degradation by a metalloproteinase, capable of degrading proteoglycan, released from cartilage in culture. This proteinase was demonstrated to be immunologically identical with fibroblast stromelysin. An early release of hyaluronic acid-binding region and large glycosaminoglycan-attachment regions was observed. With increasing time the glycosaminoglycan-attachment regions were digested into smaller fragments and the hyaluronic acid-binding regions accumulated. The degradation of link proteins also occurred concomitantly with these events. Link proteins were converted into a component of similar size to that of the smallest native link protein component. N-Terminal sequence analysis of the three human link protein components indicated that they are all derived from the same protein core, which is closely homologous to that of the rat chondrosarcoma link protein. The two larger link proteins (Mr 48,000 and 44,000) contain the same N-terminal sequence, but they differ by the apparent presence of an N-linked oligosaccharide at residue 6 of the largest link protein component. The smallest link protein (Mr 41,000), however, has an N-terminal sequence equivalent to that commencing at residue 17 in the larger link proteins. It was found that the cartilage metalloproteinase cleaves link proteins in human neonatal cartilage proteoglycan aggregates at the His-16-Ile-17 bond, the same position at which the smallest link protein component appears to be derived naturally from the two larger link protein components. These results suggest that stromelysin secreted by chondrocytes can account for the increased accumulation of hyaluronic acid-binding regions and much of the degradation of link protein observed during aging within human articular cartilage.
Project description:Cartilage proteoglycan aggregate formation was studied by zonal rate centrifugation in sucrose gradients. Proteoglycan aggregates, monomers and proteins could be resolved. It was shown that the optimal proportion of hyaluronic acid for proteoglycan aggregate formation was about 1% of proteoglycan dry weight. The reaggregation of dissociated proteoglycan aggregate A1 fraction was markedly concentration-dependent and even at 9 mg/ml only about 90% of the aggregates were reformed. The lowest proportion of link protein required for maximal formation of link-stabilized proteoglycan aggregates was 1.5% of proteoglycan dry weight. It was separately shown that link protein co-sedimented with the proteoglycan monomer. By competition with isolated hyaluronic acid-binding-region fragments, a proportion of the link proteins was removed from the proteoglycan monomers, indicating that the link protein binds to the hyaluronic acid-binding region of the proteoglycan monomer.
Project description:The action of purified rabbit bone stromelysin was investigated on proteoglycan aggregates from pig laryngeal cartilage. The enzyme caused a rapid fall in viscosity of proteoglycan aggregate solution (6 mg/ml), and the products of a partial digest (60% loss of relative viscosity) and a complete digest (95% loss of relative viscosity) were characterized. Analysis by gel chromatography on Sepharose 2B under associative conditions showed that 95% of the glycosaminoglycans in the complete digest were in small-sized fragments, whereas most of the hyaluronan-binding G1 domain and link protein remained intact and bound to hyaluronan. In contrast, there was extensive digestion of the G2 domain which resulted in 76% loss in its detection by immunoassay. Analysis of the partial digest also showed considerable loss (40%) of detection of the G2 domain, but the glycosaminoglycan-rich fragments were much larger than in the complete digest. There was also much less cleavage to create small fragments containing the G1 domain. This was evident on SDS/PAGE analysis where a 58 kDa G1 domain fragment was abundant in the complete digest, but was only present in small amounts in the partial digest. There was also only very limited conversion of link protein from a 44 kDa form to a 40 kDa form. The digestion of proteoglycan aggregate (6 mg/ml) by stromelysin was unaffected by the addition of a high concentration of extra chondroitin sulphate chains (14 mg/ml), and the digestion of proteoglycan monomer showed that the G1 domain was resistant to stromelysin digestion even when not bound to hyaluronan and link protein. The results show that stromelysin degrades the proteoglycan protein core with major cleavages close to, but not within, the G1 domain, and extensive cleavage in other regions. Experiments with purified collagenase, a metalloproteinase structurally related to stromelysin, showed that it too cleaved proteoglycan at several sites within the glycosaminoglycan-rich region of the core protein. Metalloproteinase attack on proteoglycan thus not only occurs with stromelysin but also with collagenase.
Project description:The 'neutral' proteoglycan-degrading metalloproteinase of human articular cartilage was purified 3,500-fold by use of an anti-(matrix metalloproteinase-3) immunoglobulin G affinity column. Molecular masses of the latent and multiple active forms and specificity of action on casein, transferrin, gelatin and fibronectin were identical with those of authentic stromelysin (matrix metalloproteinase-3) from cultured human rheumatoid synovial fibroblasts. The optimum pH of this proteinase on proteoglycan monomer was pH 5.5, and on Azocoll, 6.2; digestion of fibronectin and gelatin was more extensive at pH 5.5 than at 7.5.
Project description:Interleukin 1 stimulation of human articular cartilage in organ culture produced the concomitant release of proteoglycan fragments and latent metalloproteinase. The released fragments ranged in size from that of almost intact proteoglycan subunits to the product of limiting digestion generated by the activated metalloproteinase. None of the fragments possessed the ability to interact with hyaluronic acid. Analysis of proteoglycan aggregate digested with the activated metalloproteinase showed that isolated hyaluronic acid-binding regions were produced from the proteoglycan subunits, and that the two higher-Mr link-protein components (Mr 48,000 and 44,000) were converted into the lowest-Mr component (Mr 41,000). Link protein extracted from cartilage under stimulation with interleukin 1 showed a similar conversion. These results suggest that interleukin 1 stimulates the release of latent metalloproteinase from chondrocytes and that a proportion of the enzyme is activated in situ in the cartilage matrix. The mode of action of the activated enzyme is compatible with a role in the changes in proteoglycan structure seen in aging.
Project description:Human articular-cartilage link proteins are resolved into three components by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, indicative of three different structures. The action of the proteinase clostripain yields a single link-protein component with electrophoretic properties analogous to those of the smallest (most mobile) native link protein, suggesting that this link protein may be derived naturally from one or both of the larger molecules by proteolytic cleavage in situ. Upon chemical deglycosylation of native link protein two components are resolved, suggesting that two of the link proteins differ only in their degree and/or type of oligosaccharide substitution. This pattern is compatible with a proteolytic origin for the smallest link protein. During aging further proteolytic fragmentation occurs, though it is only apparent on reduction of disulphide bonds. This fragmentation occurs at identical sites in all three native link proteins, indicating the existence of a large region common to all the link proteins, which appears to consist predominantly of the C-terminal half of the molecules. These observations are compatible with the variation in oligosaccharide and proteolytic heterogeneity occurring at the N-terminus of the link proteins.
Project description:Post-traumatic osteoarthritis (PTOA) is characterized by progressive cartilage degeneration in injured joints. Since fibronectin-fragments (Fn-fs) degrade cartilage mainly through up-regulating matrix metalloproteinases (MMPs) and pro-inflammatory cytokines, we hypothesized that Fn-fs play a key role in PTOA by promoting chondrolysis in and around injured cartilage. To test this hypothesis, we profiled the catabolic events focusing on fibronectin fragmentation and proteinase expression in bovine osteochondral explants following a single blunt impact on cartilage with a drop tower device which created partial-thickness tissue damage. Injured and control explants were cultured for up to 14 days. The presence of Fn-fs, MMPs (-1, -3, -13), ADAMTS-5 in culture media and in cartilage was determined with immunoblotting. The daily proteoglycan (PG) depletion of cartilage matrix was assessed with DMMB assay. The effect of explant-conditioned media on chondrocytes was also examined with immunoblotting. Impacted cartilage released significantly higher amount of native Fn, three chondrolytic Fn-fs and PG than non-impacted controls did. Those increases coincided with up-regulation of MMP-3 both in culture media and in impacted cartilage. These findings support our hypothesis that PTOA may be propelled by Fn-fs which act as catabolic mediators through up-regulating cartilage-damaging proteinases.
Project description:The synthesis of link-stabilized proteoglycan aggregates by rabbit articular chondrocytes was investigated by [35S]sulphate labelling of primary monolayer cultures maintained for up to 21 days. (1) At all culture times the cells secreted a high-molecular-weight cartilage-type proteoglycan monomer of which 75%-80% formed aggregates with hyaluronic acid. (2) At 2 days of culture all of the aggregates were in link-stabilized form, but by 21 days only 5% were link-stabilized, as shown by displacement of monomers from the aggregate by hyaluronic acid oligosaccharides. (3) The addition of purified link protein to 21-day culture medium increased the proportion of link-stable aggregate from 5% to 70%. (4) Analysis of [3H]serine-labelled proteoglycan aggregates in the medium showed a marked decrease with culture time in the ratio of 3H-labelled link protein to 3H-labelled core protein present. The results suggest that the secretion of proteoglycan monomers and link protein by articular chondrocytes changes independently during prolonged monolayer culture.
Project description:ObjectiveCurcumin (diferuloylmethane) is a phytochemical with potent anti-inflammatory and anti-oxidant properties, and has therapeutic potential for the treatment of a range of inflammatory diseases, including osteoarthritis (OA). The aim of this study was to determine whether non-toxic concentrations of curcumin can reduce interleukin-1beta (IL-1β)-stimulated inflammation and catabolism in an explant model of cartilage inflammation.MethodsArticular cartilage explants and primary chondrocytes were obtained from equine metacarpophalangeal joints. Curcumin was added to monolayer cultured primary chondrocytes and cartilage explants in concentrations ranging from 3μM-100μM. Prostaglandin E 2 (PGE 2) and matrix metalloproteinase (MMP)-3 release into the secretome of IL-1β-stimulated explants was measured using a competitive ELISA and western blotting respectively. Proteoglycan (PG) release in the secretome was measured using the 1,9-dimethylmethylene blue (DMMB) assay. Cytotoxicity was assessed with a live/dead assay in monolayer cultures after 24 hours, 48 hours and five days, and in explants after five days.ResultsCurcumin induced chondrocyte death in primary cultures (50μM p<0.001 and 100μM p<0.001) after 24 hours. After 48 hours and five days, curcumin (≥25μM) significantly increased cell death ( p<0.001 both time points). In explants, curcumin toxicity was not observed at concentrations up to and including 25μM after five days. Curcumin (≥3μM) significantly reduced IL-1β-stimulated PG ( p<0.05) and PGE 2 release ( p<0.001) from explants, whilst curcumin (≥12μM) significantly reduced MMP-3 release ( p<0.01).ConclusionNon-cytotoxic concentrations of curcumin exert anti-catabolic and anti-inflammatory effects in cartilage explants.
Project description:The interaction between proteoglycan and link protein extracted from bovine articular cartilage (15-18-month-old animals) was investigated in 0.5 M-guanidinium chloride. The proteoglycans, radiolabelled as the aggregate (A1 fraction), were fractionated by two 'dissociative' density-gradient centrifugations (A1D1D1) followed by a rate-zonal centrifugation (S1) to yield an A1D1D1S1 preparation. At least 65% of these proteoglycans were able to bind to hyaluronate, but only 52% were able to bind to link protein as assessed by chromatography on Sepharose CL-2B. Over 80% of the [3H]link-protein preparation, radiolabelled as the aggregate, was able to interact with proteoglycan as assessed by chromatography on Sepharose CL-4B. Equilibrium-boundary-centrifugation studies performed at low link-protein concentrations (2.42 x 10(-9) M-5.93 x 10(-8) M) were analysed by Scatchard-type plots and indicated a Kd of 1.5 x 10(-8) M and a stoichiometry, n = 0.56, i.e. approx. 56% of those proteoglycans capable of binding to link protein had a strong site for link protein if a 1:1 stoichiometry were assumed. However, experiments performed at higher link-protein concentrations (3.5 x 10(-7) M and 8 x 10(-7) M) yielded stoichiometry values which were link-protein-concentration-dependent. Non-equilibrium binding studies using chromatography on Sepharose CL-2B and rate-zonal centrifugation yielded apparent stoichiometries between 0.6 and 7.5 link-protein molecules per proteoglycan monomer as a function of increasing link-protein concentration. It was concluded that a proportion of the proteoglycan molecules had a strong site for binding a single link protein (Kd 1.5 x 10(-8) M) and that at high link-protein concentrations a weaker, open-ended, process of link-protein self-association nucleated upon the strong link-protein-proteoglycan complex occurred. Hyaluronate oligosaccharides appeared to abolish a proportion of this self-association (as observed by Bonnet, Dunham & Hardingham [(1985) Biochem. J. 228, 77-85] in a study of link-protein-hyaluronate-oligosaccharide interactions) so as to leave a link protein:proteoglycan stoichiometry of 2. It is not clear whether this second link-protein molecule binds directly to the proteoglycan or to the first link protein.
Project description:Binding region and link protein were prepared from pig laryngeal cartilage proteoglycans after chondroitinase ABC and trypsin digestion. Experiments on gel chromatography showed the purified binding region to interact reversibly with hyaluronate (HA), and this binding was also shown to be stabilized by native link protein. The trypsin-prepared link protein showed properties of self-association in solution that were partially inhibited by oligosaccharides (HA10-16) and abolished by modification of free amino groups (lysine residues) with 2-methylmaleic anhydride. The Mr (sedimentation equilibrium) of the modified link protein was 41 700. Analysis of binding region showed it to contain 25% (w/w) carbohydrate, mainly in galactose, glucosamine, mannose and galactosamine. It contained some keratan sulphate, as digestion with endo-beta-D-galactosidase (keratanase) removed 28% galactose and 25% glucosamine and the Mr (sedimentation equilibrium) decreased from 66 500 to 60 800. After keratanase digestion the interaction with polyclonal antibodies specific for binding region was unaffected, but the response in a radioimmunoassay with a monoclonal antibody to keratan sulphate was decreased by 47%. Preparation of a complex between binding region, link protein and HA approximately 34 showed a single component (5.5S) of Mr (sedimentation equilibrium) 133 500. In this complex the antigenic determinants of link protein appeared masked, as previously found with proteoglycan aggregates. The isolated binding region and link protein were thus shown to retain properties comparable with those involved in the structure and organization of proteoglycan aggregates.