The nature of species prepared by photolysis of half-reduced, fully reduced and fully reduced carbonmonoxy-cytochrome c-551 peroxidase from Pseudomonas aeruginosa.
Ontology highlight
ABSTRACT: The half-reduced, fully reduced and fully reduced CO-bound forms of the enzyme cytochrome c-551 peroxidase isolated from Pseudomonas aeruginosa were examined by a combination of low-temperature absorption and magnetic-circular-dichroism spectroscopy. Deliberate low-temperature (4.2K) photolysis of these forms of the enzyme, in all of which the high-potential haem is in the ferrous state, revealed that this haem group, assigned to have a histidine-methionine ligand set, is photosensitive. The photolabile ligand is most likely to be the methionine residue, and the product of photolysis, namely the high-spin (S = 2) ferrous form, is stable at low temperature (4.2K). Warming to approx. 20K allows thermal recombination to occur, restoring the low-spin (S = 0) state. The low-potential haem (bis-histidine ligation) is photoinert in both ferric and ferrous states; however, the photosensitive CO adduct of this centre cannot be maintained as the photolysed (S = 2) product at 4.2K. This surprising observation may be due to quantum-mechanical tunnelling of the CO through the activation barrier even at 4.2K, implying that the activation barrier to thermal recombination is both narrow and low. Low-temperature absorption spectroscopy reveals that the high-potential haem has a very characteristic low-spin ferrous spectrum with intense highly structured beta- and split alpha-bands, whereas the spectrum of the low-potential ferrous haem contains alpha- and beta-bands devoid of fine structure.
Project description:Hydrogen exchange rates for backbone amide protons of oxidized Pseudomonas aeruginosa cytochrome c-551 (P. aeruginosa cytochrome c) have been measured in the presence of low concentrations of the denaturant guanidine hydrochloride. Analysis of the data has allowed identification of submolecular unfolding units known as foldons. The highest-energy foldon bears similarity to the proposed folding intermediate for P. aeruginosa cytochrome c. Parallels are seen to the foldons of the structurally homologous horse cytochrome c, although the heme axial methionine-bearing loop has greater local stability in P. aeruginosa cytochrome c, in accord with previous folding studies. Regions of low local stability are observed to correspond with regions that interact with redox partners, providing a link between foldon properties and function.
Project description:Magnetic-c.d., e.p.r. and optical-absorption spectra are reported for the half-reduced form of Pseudomonas aeruginosa cytochrome c-551 peroxidase, a di-haem protein, and its fluoride derivative. Comparison of this enzyme species with oxidized peroxidase shows the occurrence of spin-state changes at both haem sites. The high-potential haem changes its state from partially high-spin to low-spin upon reduction. This is linked to a structural alteration at the ferric low-potential haem group, causing it to change from low-spin to high-spin. Low-temperature spectra demonstrate photolysis of an endogenous ligand of the high-potential haem. In addition, an inactive form of enzyme is examined in which the structural change at the ferric low-potential haem does not occur on reduction of the high-potential haem.
Project description:Rebinding of CO to reduced cytochrome c oxidase in plant mitochondria has been monitored optically at 590-630 nm after flash photolysis at low temperature from 160 to 200 K. (1) Under 100%-CO saturation, CO rebinding exhibits a four-step mechanism. The thermodynamic parameters of the first phase have been determined; its activation energy, Ea1, is 38.9 kJ.mol-1 and its enthalpy, delta H+/-1, and entropy, delta S+/-1, of activation are respectively 37.5 kJ.mol-1 and -75.8J.mol-1.K-1. (2) When the CO concentration is decreased to 0.2%, rebinding still occurs according to a four-step mechanism. The rate constant of the first phase is CO-concentration-independent. Under non-saturating conditions there is only one CO molecule per occupied site. The rebinding mechanism does not require additional CO molecules to be present in the haem pocket. (3) Dual-wavelength scanning experiments failed to detect optical forms correlated with the resolved phases. (4) Results are discussed with respect to previous work related to CO rebinding to mammalian cytochrome c oxidase and myoglobin.
Project description:The magnetic properties at different temperatures of oxidized Pseudomonas aeruginosa cytochrome c-551 peroxidase were studied, with the use of the technique of magnetic-circular-dichroism spectroscopy. At 4.2K, both constituent haems were found to be low-spin, and the axial ligand pairs were identified as histidine-histidine and histidine-methionine. At room temperature high-spin signals were observed, amounting to less than 25% of the total haem present. These signals are concluded to arise mainly from a temperature-dependent spin-state equilibrium in the methionine-ligated haem.
Project description:Half-metallic fully compensated ferrimagnets (HM-FCFMs) constitute a special class of half-metals exhibiting zero magnetization at zero temperature. While there have been a number of theoretical studies predicting the existence of such materials over the last 25 years, very few of those have been synthesized and observed that they exhibit expected properties. Herein, we demonstrate that a NiAs-type hexagonal-structured (CrFe)S compound could serve as an HM-FCFM material. It has a half-metallic nature of 100% spin-polarised Fermi surfaces and yet zero magnetisation at the ground state. The magnetisation shows linear behaviour as a function of the magnetic field at temperatures below the compensation temperature (~ 190 K). In addition, it shows a high magnetic coercivity of 3.8 T at 300 K. These magnetic features contribute to a significant development in the application of HM-FCFMs for spintronics devices.
Project description:The reaction of ascorbate-reduced Pseudomonas cytochrome oxidase with oxygen was studied by using stopped-flow techniques at pH 7.0 and 25 degrees C. The observed time courses were complex, the reaction consisting of three phases. Of these, only the fastest process, with a second-order rate constant of 3.3 X 10(4) M-1.S-1, was dependent on oxygen concentration. The two slower processes were first-order reactions with rates of 1.0 +/- 0.4s-1 and 0.1 +/- 0.03s-1. A kinetic titration experiment revealed that the enzyme had a relatively low affinity constant for oxygen, approx. 10(4)M-1. Kinetic difference spectra were determined for all three reaction phases, showing each to have different characteristics. The fast-phase difference spectrum showed that changes occurred at both the haem c and haem d1 components of the enzyme during this process. These changes were consistent with the haem c becoming oxidized, but with the haem d1 assuming a form that did not correspond to the normal oxidized state, a situation that was not restored even after the second kinetic phase, which reflected further changes in the haem d1 component. The results are discussed in terms of a kinetic scheme.
Project description:The electron-transfer reaction between azurin and cytochrome c1 isolated from Pseudomonas aeruginosa was investigated by rapid-reaction techniques. Temperture-jump studies clearly reveal two chemical relaxations, the amplitudes of which have ikentical spectral distributions, but relaxation times show different dependencies on reactant concentrations. Stopped experiments also showed complex kinetics. A model is proposed which is consistent with the kinetic and equilibrium data obtained. The central feature of this model is the proposal that two intercenvertible forms of reduced azurin exist in solution, only one of which si able to participate directly in the electron-transfer reaction with cytochrome c-551. Support for the hypothesis that two forms of reduced azurin exist is derived from studies on the electron-transfer reaction between azurin and Pseudomonas cytochrome oxidase. The possible physiological significance of such a situation is discussed.
Project description:Illumination at low temperature of the peroxide compound of horseradish peroxidase (HRP-I) causes partial conversion of the haem electronic structure from a ferryl-porphyrin radical species into a low-spin ferric state. Magnetic-c.d. (m.c.d.) and e.p.r. spectral features of the photolysis product are almost identical with those of the alkaline form of ferric HRP, proposed on the basis of its near-i.r. m.c.d. spectrum to be a Fe(III)-OH species. The ferric product of HRP-I photolysis also contains free-radical e.p.r. signals. Conversion of HRP-I into the Fe(III)-OH species, which requires transfer of a proton and two electrons from the protein, is shown to be a two-step process.
Project description:The work reports on the physicochemical and tribological properties of gallate ester oils prepared from fully renewable resources, such as gallic acid and fatty acids. The ester structures were identified by proton nuclear magnetic resonance spectroscopy (1H NMR), carbon nuclear magnetic resonance spectroscopy (13C NMR) and high-resolution mass spectra (HRMS) data. The density at 20 °C (d 20), kinematic viscosity (KV), viscosity index (VI), pour point (PP), flash point (FP), thermal and oxidative stabilities, friction-reducing and antiwear properties of gallate ester oils were evaluated. The tribological properties of gallate ester oils as lubricants for steel, copper, and aluminum tribo-pairs can be compared with those of the commercially available lubricating oil tris(2-ethylhexyl) trimellitate (Phe-3Ci8), but their viscosity-temperature characteristics, thermal and oxidative stabilities are better than those of Phe-3Ci8. More importantly, they have much higher biodegradabilities than Phe-3Ci8. The study of the lubrication mechanism shows that the physical and/or chemical adsorption film formed by gallate ester molecules between friction pairs is the key factor for them to obtain friction-reducing and antiwear properties.
Project description:1. The results of non-linear optimization studies on the mechanism of reaction of solid-state fully reduced membrane-bound cytochrome oxidase with CO over the 178--203 K range are presented. The analysis is carried out on data obtained by dual-wavelength multichannel spectroscopy at three wavelength pairs (444--463 nm, 590--630 nm and 608--630 nm), which yield three distinct progress curves. The only model that satisfies the triple requirement of a standard deviation within the standard error of the data, a random distribution of residuals and good determination of the optimized parameters is a two-species sequential mechanism: flash photolysis yields unliganded cytochrome oxidase and free CO, which then recombine to form species Ic; Ic is then converted into species IIc, which is identical with the cytochrome oxidase-CO complex existing before flash photolysis. All the thermodynamic parameters describing this model are calculated. 2. On the basis of the data obtained from this paper, together with data from potentiometric studies, magnetic susceptibility measurements and i.r. spectroscopy, the chemical identity of the species is suggested.