Stimulation of polyphosphoinositide hydrolysis by thrombin in membranes from human fibroblasts.
Ontology highlight
ABSTRACT: One of the earliest actions of thrombin in fibroblasts is stimulation of a phospholipase C (PLC) that hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. In membranes prepared from WI-38 human lung fibroblasts, thrombin activated an inositol-lipid-specific PLC that hydrolysed [32P]PIP2 and [32P]phosphatidylinositol 4-monophosphate (PIP) to [32P]IP3 and [32P]inositol 1,4-bisphosphate (IP2) respectively. Degradation of [32P]phosphatidylinositol was not detected. PLC activation by thrombin was dependent on GTP, and was completely inhibited by a 15-fold excess of the non-hydrolysable GDP analogue guanosine 5'-[beta-thio]diphosphate (GDP[S]). Neither ATP nor cytosol was required. Guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) also stimulated polyphosphoinositide hydrolysis, and this activation was inhibited by GDP[S]. Stimulation of PLC by either thrombin or p[NH]ppG was dependent on Ca2+. Activation by thrombin required Ca2+ concentrations between 1 and 100 nM, whereas stimulation of PLC activity by GTP required concentrations of Ca2+ above 100 nM. Thus the mitogen thrombin increased the sensitivity of PLC to concentrations of free Ca2+ similar to those found in quiescent fibroblasts. Under identical conditions, another mitogen, platelet-derived growth factor, did not stimulate polyphosphoinositide hydrolysis. It is concluded that an early post-receptor effect of thrombin is the activation of a Ca2+- and GTP-dependent membrane-associated PLC that specifically cleaves PIP2 and PIP. This result suggests that the cell-surface receptor for thrombin is coupled to a polyphosphoinositide-specific PLC by a GTP-binding protein that regulates PLC activity by increasing its sensitivity to Ca2+.
Project description:Prostacyclin (PGI2) production by thrombin- and bradykinin-stimulated bovine aortic endothelial cells (BAEC) and human umbilical vein endothelial cells (HUVEC) was related to the receptor-linked activation of inositide hydrolysis. Bradykinin caused a rapid and transient 3-fold increase in the formation of inositol polyphosphates in BAEC. The increase in InsP3 reflected changes mainly in the Ins(1,4,5)P3 isomer. Thrombin was less effective than bradykinin in increasing InsP3 levels and appeared to only minimally stimulate the production of PGI2 in BAEC. In HUVEC, thrombin caused a 5-fold elevation of Ins(1,4,5)P3, closely related to a rise in PGI2 production. However, bradykinin did not affect inositol phosphates and PGI2 production in HUVEC. Other inositol phosphates were also assessed to obtain information on putative metabolism of Ins(1,4,5)P3. The present study supports the notion that formation of Ins(1,4,5)P3 is linked to an increase in PGI2 production in endothelial cells and furthermore provides evidence for a large degree of heterogeneity in the responses of BAEC and HUVEC to thrombin and bradykinin.
Project description:The data presented here are related to the research paper entitled "Thrombin induces protease-activated receptor 1 signaling and activation of human atrial fibroblasts and dabigatran prevents these effects" (Altieri et al., 2018) [1]. Data show that silencing of protease-activated receptor 1 (PAR1) prevents the activation of Fib isolated from atrial appendages of patients without atrial fibrillation (AF), as assessed by immunofluorescence for α-smooth muscle actin (αSMA) and Picro-Sirius red staining. Moreover, it is reported that primary atrial Fib obtained from two subjects with permanent AF express PAR1 and PAR2 and display enhanced αSMA immunoreactivity and collagen synthesis in response to thrombin, but not to dabigatran-bound thrombin, alike Fib from non-fibrillating atria.
Project description:In a previous study, we reported that human endothelial cells (ECs) express and produce their own coagulation factors (F) that can activate cell surface FX without the additions of external proteins or phospholipids. We now describe experiments that detail the expression and production in ECs and fibroblasts of the clotting proteins necessary for formation of active prothrombinase (FV-FX) complexes to produce thrombin on EC and fibroblast surfaces. EC and fibroblast thrombin generation was identified by measuring: thrombin activity; thrombin-antithrombin complexes; and the prothrombin fragment 1.2 (PF1.2), which is produced by the prothrombinase cleavage of prothrombin (FII) to thrombin. In ECs, the prothrombinase complex uses surface-attached FV and γ-carboxyl-glutamate residues of FX and FII to attach to EC surfaces. FV is also on fibroblast surfaces; however, lower fibroblast expression of the gene for γ-glutamyl carboxylase (GGCX) results in production of vitamin K-dependent coagulation proteins (FII and FX) with reduced surface binding. This is evident by the minimal surface binding of PF1.2, following FII activation, of fibroblasts compared to ECs. We conclude that human ECs and fibroblasts both generate thrombin without exogenous addition of coagulation proteins or phospholipids. The two cell types assemble distinct forms of prothrombinase to generate thrombin.
Project description:Addition of Ca2+ to a plasma-membrane fraction derived from human or rabbit neutrophils led to the specific breakdown of polyphosphoinositides. The degradation products were identified as diacylglycerol and inositol bis- and tris-phosphate, thus demonstrating the presence of a Ca2+-activated phospholipase C. The newly generated diacylglycerol resembled the polyphosphoinositides in its fatty acid composition, and in the presence of MgATP2- it was converted into phosphatidate. These results therefore demonstrate the presence in neutrophil plasma membranes not only of polyphosphoinositide phosphodiesterase but also of diacylglycerol kinase.
Project description:1. A new assay procedure has been devised for measurement of the Ca(2+)-activated polyphosphoinositide phosphodiesterase (phosphatidylinositol polyphosphate phosphodiesterase) activity of erythrocyte ghosts. The ghosts are prepared from cells previously incubated with [(32)P]P(i). They are incubated under appropriate conditions for activation of the phosphodiesterase and the released (32)P-labelled inositol bisphosphate and inositol trisphosphate are separated by anion-exchange chromatography on small columns of Dowex-1 (formate form). When necessary, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate can be deacylated and the released phosphodiesters separated on the same columns. 2. The release of both inositol bisphosphate and inositol trisphosphate was rapid in human ghosts, with half of the labelled membrane-bound phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate broken down in only a few minutes in the presence of 0.5mm-Ca(2+). For both esters, optimum rates of release were seen at pH6.8-6.9. Mg(2+) did not provoke release of either ester. 3. Ca(2+) provoked rapid polyphosphoinositide breakdown in rabbit erythrocyte ghosts and a slower breakdown in rat ghosts. Erythrocyte ghosts from pig or ox showed no release of inositol phosphates when exposed to Ca(2+). 4. In the presence of Mg(2+), the inositol trisphosphate released from phosphatidylinositol 4,5-bisphosphate was rapidly converted into inositol bisphosphate by phosphomonoesterase activity. 5. Neomycin, an aminoglycoside antibiotic that interacts with polyphosphoinositides, inhibited the breakdown of both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, with the latter process being appreciably more sensitive to the drug. Phenylmethanesulphonyl fluoride, an inhibitor of serine esterases that is said to inhibit phosphatidylinositol phosphodiesterase, had no effect on the activity of the erythrocyte polyphosphoinositide phosphodiesterase. 6. These observations are consistent with the notion that human, and probably rabbit and rat, erythrocyte membranes possess a single polyphosphoinositide phosphodiesterase that is activated by Ca(2+) and that attacks phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate with equal facility. Inhibition of this activity by neomycin seems likely to be due to interactions between neomycin and the polyphosphoinositides, with the greater inhibition of phosphatidylinositol 4,5-bisphosphate breakdown consistent with the greater affinity of the drug for this lipid. In addition, erythrocyte membranes possess Mg(2+)-dependent phosphomonoesterase that converts inositol 1,4,5-triphosphate into inositol bisphosphate.
Project description:The relationship between polyphosphoinositide hydrolysis and protein kinase C (PKC) activation was explored in rabbit platelets treated with the agonists platelet-activating factor (PAF), thrombin and 12-O-tetradecanoylphorbol 13-acetate (TPA), and with the anti-aggregant prostacyclin (PGI2). Measurement of the hydrolysis of radiolabelled inositol-containing phospholipids relied upon the separation of the products [3H]inositol mono-, bis- and tris-phosphates by Dowex-1 chromatography. PKC activity, measured in platelet cytosolic and Nonidet-P40-solubilized particulate extracts that were fractionated by MonoQ chromatography, was based upon the ability of the enzyme to phosphorylate either histone H1 in the presence of the activators Ca2+, diacylglycerol and phosphatidylserine, or protamine in the absence of Ca2+ and lipid. Treatment of platelets for 1 min with PAF (2 nM) or thrombin (2 units/ml) led to the rapid hydrolysis of inositol-containing phospholipids, a 2-3-fold stimulation of both cytosolic and particulate-derived PKC activity, and platelet aggregation. Exposure to TPA (200 nM) for 5 min did not stimulate formation of phosphoinositides, but translocated more than 95% of cytosolic PKC into the particulate fraction, and induced a slower rate of aggregation. PGI2 (1 microgram/ml) did not enhance phosphoinositide production, and at higher concentrations (50 micrograms/ml) it antagonized the ability of PAF, but not that of thrombin, to induce inositol phospholipid turnover, even though platelet aggregation in response to both agonists was blocked by PGI2. On the other hand, PGI2 alone also appeared to activate (by 3-5-fold) cytosolic and particulate PKC by a translocation-independent mechanism. The activation of PKC by PGI2 was probably mediated via cyclic AMP (cAMP), as this effect was mimicked by the cAMP analogue 8-chlorophenylthio-cAMP. It is concluded that this novel mechanism of PKC regulation by platelet agonists may operate independently of polyphosphoinositide turnover, and that activation of cAMP-dependent protein kinase represents another route leading to PKC activation.
Project description:For sustained vision, photoactivated rhodopsin (Rho*) must undergo hydrolysis and release of all-trans-retinal, producing substrate for the visual cycle and apo-opsin available for regeneration with 11-cis-retinal. The kinetics of this hydrolysis has yet to be described for rhodopsin in its native membrane environment. We developed a method consisting of simultaneous denaturation and chromophore trapping by isopropanol/borohydride, followed by exhaustive protein digestion, complete extraction, and liquid chromatography-mass spectrometry. Using our method, we tracked Rho* hydrolysis, the subsequent formation of N-retinylidene-phosphatidylethanolamine (N-ret-PE) adducts with the released all-trans-retinal, and the reduction of all-trans-retinal to all-trans-retinol. We found that hydrolysis occurred faster in native membranes than in detergent micelles typically used to study membrane proteins. The activation energy of the hydrolysis in native membranes was determined to be 17.7 ± 2.4 kcal/mol. Our data support the interpretation that metarhodopsin II, the signaling state of rhodopsin, is the primary species undergoing hydrolysis and release of its all-trans-retinal. In the absence of NADPH, free all-trans-retinal reacts with phosphatidylethanolamine (PE), forming a substantial amount of N-ret-PE (∼40% of total all-trans-retinal at physiological pH), at a rate that is an order of magnitude faster than Rho* hydrolysis. However, N-ret-PE formation was highly attenuated by NADPH-dependent reduction of all-trans-retinal to all-trans-retinol. Neither N-ret-PE formation nor all-trans-retinal reduction affected the rate of hydrolysis of Rho*. Our study provides a comprehensive picture of the hydrolysis of Rho* and the release of all-trans-retinal and its reentry into the visual cycle, a process in which alteration can lead to severe retinopathies.
Project description:Mechanical stimulation is highly associated with pathogenesis of human hypertrophic scar. Although much work has focused on the influence of mechanical stress on fibroblast populations from various tissues and organs in the human body, their effects on cultured dermal fibroblasts by the area of the body have not been as well studied. In this study, cultures of skin fibroblasts from two different body sites were subjected to cyclic mechanical stimulation with a 10% stretching amplitude at a frequency of 0.1 Hz for 24, 36 and 48 hours, respectively, and thereafter harvested for experimental assays. Fibroblasts from scapular upper back skin, subjected to mechanical loads for 36 and 48 hours, respectively, were observed to proliferate at a higher rate and reach confluent more rapidly during in vitro culturing, had higher expression levels of mRNA and protein production of integrin β1, p130Cas and TGF β1 versus those from medial side of upper arm. These data indicate that skin fibroblasts, with regard to originated body sites studied in the experiments, display a diversity of mechanotransduction properties and biochemical reactions in response to applied mechanical stress, which contributes to the increased susceptibility to hypertrophic scars formation at certain areas of human body characterized by higher skin and muscle tension.