Regulation of the translocation of phosphatidate phosphohydrolase between the cytosol and the endoplasmic reticulum of rat liver. Effects of unsaturated fatty acids, spermine, nucleotides, albumin and chlorpromazine.
Ontology highlight
ABSTRACT: The translocation of phosphatidate phosphohydrolase between the cytosol and the microsomal membranes was investigated by using a cell-free system from rat liver. Linoleate, alpha-linolenate, arachidonate and eicosapentenoate promoted the translocation to membranes with a similar potency to that of oleate. The phosphohydrolase that associated with the membranes in the presence of [14C]oleate or 1mM-spermine coincided on Percoll gradients with the peak of rotenone-insensitive NADH-cytochrome c reductase, and in the former case with a peak of 14C. Microsomal membranes were enriched with the phosphohydrolase activity by incubation with [14C]oleate or spermine and then incubated with albumin. The phosphohydrolase activity was displaced from the membranes by albumin, and this paralleled the removal of [14C]oleate from the membranes when this acid was present. Chlorpromazine also displaced phosphatidate phosphohydrolase from the membranes, but it did not displace [14C]oleate. The effects of spermine in promoting the association of the phosphohydrolase with the membranes was inhibited by ATP, GTP, CTP, AMP and phosphate. ATP at the same concentration did not antagonize the translocating effect of oleate. From these results and previous work, it was concluded that the binding of long-chain fatty acids and their CoA esters to the endoplasmic reticulum acts as a signal for more phosphatidate phosphohydrolase to associate with these membranes and thereby to enhance the synthesis of glycerolipids, especially triacylglycerol. The translocation of the phosphohydrolase probably depends on the increased negative charge on the membranes, which could also be donated by the accumulation of phosphatidate. Chlorpromazine could oppose the translocation by donating a positive charge to the membranes.
Project description:When a particle-free supernatant fraction from rat liver was incubated at 37 degrees C with mitochondria and oleate, some of the enzyme phosphatidate phosphohydrolase (PAP), initially present in the particle-free supernatant, was recovered, after the incubation, bound to mitochondria. This translocation of PAP from cytosol to mitochondria was stimulated by oleate or palmitate in a similar fashion to the stimulation of translocation of PAP to endoplasmic reticulum [Martin-Sanz, Hopewell & Brindley (1984) FEBS Lett. 175, 284-288]. Translocation of PAP from particle-free supernatant to a partially purified mitochondrial-outer-membrane preparation was also stimulated by oleate. More PAP was bound to a mitochondrial-outer-membrane fraction washed in 0.5 M-NaCl before resuspension in sucrose than to a sucrose-washed mitochondrial-outer-membrane preparation. In contrast, washing of microsomal membranes in 0.5 M-NaCl did not enhance the binding of PAP to these membranes. PAP also binds to phosphatidate-loaded mitochondria or microsomes (microsomal fractions). In the experimental system employed, more PAP bound to mitochondria loaded with phosphatidate than to microsomes loaded with phosphatidate. The results are discussed in relation to the role of mitochondrial phosphatidate in liver lipid metabolism.
Project description:The incubation of hepatocytes with 1-4mM-oleate increased the total activity of phosphatidate phosphohydrolase that was measured in the presence of Mg2+ to about 2-fold. This was accompanied by an increase in the proportion of the enzyme that was isolated with the particulate fractions. Conversely, the addition of up to 4mM-oleate decreased the recovery of phosphatidate phosphohydrolase in the cytosolic fraction from about 70% to 3% when hepatocytes were lysed with digitonin. Most of the increase in the membrane-associated phosphohydrolase activity was isolated after cell fractionation in the microsomal fraction that was enriched with the endoplasmic-reticulum marker arylesterase. It is proposed that the translocation of phosphatidate phosphohydrolase facilitates the increased synthesis of triacylglycerols in the liver when it is presented with an increased supply of fatty acids.
Project description:1. Microsomal membranes from rat liver were incubated with ATP, CoA, Mg2+, [14C]palmitate, F- and sn-glycerol 3-phosphate in order to label them with [14C]phosphatidate. These membranes were isolated and used in a second incubation in which [3H]CTP was present, and the simultaneous synthesis of [14C]diacylglycerol and [3H]CDP-diacylglycerol was measured. 2. The addition of phosphatidate phosphohydrolase, which had been partially purified from the particle-free supernatant, supplemented the activity of the endogenous phosphohydrolase, but it did not alter the rate of CDP-diacylglycerol formation. 3. Adding EDTA inhibited phosphatidate cytidylyl-transferase activity and stimulated the activity of the phosphohydrolases by removing excess of Mg2+. 4. Increasing the concentration of Mg2+, norfenfluramine or chlorpromazine in the assay system stimulated cytidylyltransferase activity, but decreased the activities of both phosphohydrolases. 5. The mechanism for the stimulation of cytidylyl=transferase activity by the cationic drugs and Mg2+ was investigated with emulsions of phosphatidate and the microsomal fraction of rat liver. 6. There was a threshold concentration of about 5mM-MgCl2 below which no cytidylyltransferase activity was detected in the presence or absence of norfenfluramine. Just above this threshold concentration norfenfluramine stimulated cytidylyltransferase activity, but this stimulation disappeared as the Mg2+ concentration was raised to its optimum of 20mM. Norfenfluramine therefore partially replaced the bivalent-cation requirement. 7. At 30 mM-MgCl2 amphiphilic cationic drugs inhibited cytidylyltransferase activity at relatively high concentrations in a non-competitive manner with respect to phosphatidate. 8. The implications of these results are discussed with respect to the regulation of the synthesis of the acidic phospholipids compared with the synthesis of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol.
Project description:AB toxins enter a host cell by receptor-mediated endocytosis. The catalytic A chain then crosses the endosome or endoplasmic reticulum (ER) membrane to reach its cytosolic target. Dissociation of the A chain from the cell-binding B chain occurs before or during translocation to the cytosol, and only the A chain enters the cytosol. In some cases, AB subunit dissociation is facilitated by the unique physiology and function of the ER. The A chains of these ER-translocating toxins are stable within the architecture of the AB holotoxin, but toxin disassembly results in spontaneous or assisted unfolding of the isolated A chain. This unfolding event places the A chain in a translocation-competent conformation that promotes its export to the cytosol through the quality control mechanism of ER-associated degradation. A lack of lysine residues for ubiquitin conjugation protects the exported A chain from degradation by the ubiquitin-proteasome system, and an interaction with host factors allows the cytosolic toxin to regain a folded, active state. The intrinsic instability of the toxin A chain thus influences multiple steps of the intoxication process. This review will focus on the host-toxin interactions involved with A chain unfolding in the ER and A chain refolding in the cytosol.
Project description:Lipin 1 is a bifunctional intracellular protein that regulates fatty acid metabolism in the nucleus via interactions with DNA-bound transcription factors and at the endoplasmic reticulum as a phosphatidic acid phosphohydrolase enzyme (PAP-1) to catalyze the penultimate step in triglyceride synthesis. However, livers of 8-day-old mice lacking lipin 1 (fld mice) exhibited normal PAP-1 activity and a 20-fold increase in triglyceride levels. We sought to further analyze the hepatic lipid profile of these mice by electrospray ionization mass spectrometry. Surprisingly, hepatic content of phosphatidate, the substrate of PAP-1 enzymes, was markedly diminished in fld mice. Similarly, other phospholipids derived from phosphatidate, phosphatidylglycerol and cardiolipin, were also depleted. Another member of the lipin family (lipin 2) is enriched in liver, and hepatic lipin 2 protein content was markedly increased by lipin 1 deficiency, food deprivation, and obesity, often independent of changes in steady-state mRNA levels. Importantly, RNAi against lipin 2 markedly reduced PAP-1 activity in hepatocytes from both wild type and fld mice and suppressed triglyceride synthesis under conditions of high fatty acid availability. Collectively, these data suggest that lipin 2 plays an important role as a hepatic PAP-1 enzyme.
Project description:Lung contains both Mg2+-dependent and Mg2+-independent phosphatidate phosphohydrolase activities. Addition of Triton X-100 (0.5%) or chlorpromazine (1 mM) leads to a marked increase in the total phosphatidate phosphohydrolase activity in rat lung microsomes (microsomal fractions), but a decrease in the Mg2+-dependent activity. These observations suggest that the Mg2+-independent activity is stimulated, whereas the Mg2+-dependent activity is inhibited. However, the possibility exists that Triton X-100 could stimulate the Mg2+-dependent enzymic activity in an Mg2+-independent manner. In addition, the positively charged amphiphilic drug could be replacing the enzyme's requirement for Mg2+. These two possibilities were examined by using subcellular fractions in which the Mg2+-dependent phosphatidate phosphohydrolase had been abolished by heat treatment at 55 degrees C for 15 min. Heat treatment does not affect the microsomal Mg2+-independent phosphohydrolase to any great extent. Since the 6-8-fold stimulations due to Triton X-100 and chlorpromazine are retained after heat treatment of this fraction, the Mg2+-independent activity must be involved. Addition of Triton X-100 and chlorpromazine to cytosol virtually abolishes the Mg2+-dependent phosphatidate phosphohydrolase activity and decreases the Mg2+-independent activity by half. Heat treatment also abolishes the Mg2+-dependent activity and decreases the Mg2+-independent activity by over half. The Mg2+-independent phosphatidate phosphohydrolase activity remaining after heat treatment was not affected by Triton X-100 or chlorpromazine. These studies demonstrate that Triton X-100 and chlorpromazine specifically stimulate the heat-stable Mg2+-independent phosphatidate phosphohydrolase activity in rat lung microsomes. In contrast, the heat-labile Mg2+-independent phosphatidate phosphohydrolase activities in cytosol are inhibited by these reagents. Triton X-100 and chlorpromazine inhibit the Mg2+-dependent phosphatidate phosphohydrolase activities in both rat lung microsomes and cytosol. These results are consistent with the view that a single Mg2+-dependent phosphatidate phosphohydrolase present in both microsomes and cytosol is specifically involved in glycerolipid metabolism.
Project description:Hepatocytes were preincubated with 10mM-glucagon and 100 microM-corticosterone to increase phosphatidate phosphohydrolase activity. Addition of 10 nM-glucagon or 100 microM-8-bromo cyclic GMP to a second incubation mixture that contained cycloheximide increased the half-life of the phosphohydrolase activity. Dexamethasone (100 nM) had no significant effect, but insulin (500 pM) or spermine (1 mM) decreased the half-life. None of these compounds altered the general rate of degradation of proteins labelled with [3H]leucine. There appears to be a specific control of the half-life of phosphatidate phosphohydrolase activity, which could contribute to its long-term regulation in the liver.
Project description:In eukaryotic cells, the spatial regulation of protein expression is frequently conferred through the coupling of mRNA localization and the local control of translation. mRNA localization to the endoplasmic reticulum (ER) is a prominent example of such regulation and serves a ubiquitous role in segregating the synthesis of secretory and integral membrane proteins to the ER. Recent genomic and biochemical studies have now expanded this view to suggest a role for the ER in global protein synthesis. We have utilized cell fractionation and ribosome profiling to obtain a genomic survey of the subcellular organization of mRNA translation and report that ribosomal loading of mRNAs, a proxy for mRNA translation, is biased to the ER. Notably, ER-associated mRNAs encoding both cytosolic and topogenic signal-encoding proteins display similar ribosome loading densities, suggesting that ER-associated ribosomes serve a global role in mRNA translation. We propose that the partitioning of mRNAs and their translation between the cytosol and ER compartments may represent a novel mechanism for the post-transcriptional regulation of gene expression. HEK293 cells were fractionated between the cytosol and endoplasmic reticulum. Within each fraction, ribosome footprints were generated and sequenced. In parallel, total mRNA was sequenced.
Project description:In eukaryotic cells, the spatial regulation of protein expression is frequently conferred through the coupling of mRNA localization and the local control of translation. mRNA localization to the endoplasmic reticulum (ER) is a prominent example of such regulation and serves a ubiquitous role in segregating the synthesis of secretory and integral membrane proteins to the ER. Recent genomic and biochemical studies have now expanded this view to suggest a role for the ER in global protein synthesis. We have utilized cell fractionation and ribosome profiling to obtain a genomic survey of the subcellular organization of mRNA translation and report that ribosomal loading of mRNAs, a proxy for mRNA translation, is biased to the ER. Notably, ER-associated mRNAs encoding both cytosolic and topogenic signal-encoding proteins display similar ribosome loading densities, suggesting that ER-associated ribosomes serve a global role in mRNA translation. We propose that the partitioning of mRNAs and their translation between the cytosol and ER compartments may represent a novel mechanism for the post-transcriptional regulation of gene expression.