Unknown

Dataset Information

0

F1F0-ATPase, early target of the radical initiator 2,2'-azobis-(2-amidinopropane) dihydrochloride in rat liver mitochondria in vitro.


ABSTRACT: This study was designed to determine which enzyme activities were first impaired in mitochondria exposed to 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH), a known radical initiator. EPR spin-trapping revealed generation of reactive oxygen species although malondialdehyde formation remained very low. With increasing AAPH concentrations, State-3 respiration was progressively depressed with unaltered ADP/O ratios. A top-down approach demonstrated that alterations were located at the phosphorylation level. As shown by inhibitor titrations, ATP/ADP translocase activity was unaffected in the range of AAPH concentrations used. In contrast, AAPH appeared to exert a deleterious effect at the level of F1F0-ATPase, comparable with dicyclohexylcarbodi-imide, which alters Fo proton channel. A comparison of ATP hydrolase activity in uncoupled and broken mitochondria reinforced this finding. In spite of its pro-oxidant properties, AAPH was shown to act as a dose-dependent inhibitor of cyclosporin-sensitive permeability transition initiated by Ca2+, probably as a consequence of its effect on F1F0-ATPase. Resveratrol, a potent antiperoxidant, completely failed to prevent the decrease in State-3 respiration caused by AAPH. The data suggest that AAPH, when used under mild conditions, acted as a radical initiator and was capable of damaging F1F0-ATPase, thereby slowing respiratory chain activity and reducing mitochondrial antioxidant defences.

SUBMITTER: Beauseigneur F 

PROVIDER: S-EPMC1217967 | biostudies-other | 1996 Dec

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC1217627 | biostudies-other
| S-EPMC10479855 | biostudies-literature
| S-EPMC1134632 | biostudies-other
| S-EPMC9055949 | biostudies-literature
| S-EPMC9307930 | biostudies-literature
| S-EPMC9157002 | biostudies-literature
| S-EPMC1134879 | biostudies-literature
| S-EPMC7240427 | biostudies-literature
| S-EPMC2808256 | biostudies-literature
| S-EPMC8634996 | biostudies-literature