Purification and properties of crystalline 3-hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides.
Ontology highlight
ABSTRACT: 1. The purification and crystallization of 3-hydroxybutyrate dehydrogenase from extracts of Rhodopseudomonas spheroides is described. 2. The molecular weight was calculated to be 85000 by sedimentation equilibrium. 3. Although the enzyme is stable at 0-4 degrees , dilute solutions are rapidly inactivated at 37 degrees ; NADH(2) or Ca(2+) ions prevent this inactivation. 4. The enzyme is extremely sensitive to mercurials, but can be protected by NADH(2) or Ca(2+) ions. 5. From studies on p-hydroxymercuribenzoate binding it is estimated that the enzyme contains 5-6 moles of rapidly reacting thiol groups/mole. 6. d-Lactate and dl-2-hydroxybutyrate are competitive inhibitors of d-3-hydroxybutyrate oxidation. 7. The properties of the crystalline enzyme are compared with those of 3-hydroxybutyrate dehydrogenase preparations from other sources.
Project description:1. The reversible NAD(+)-linked oxidation of d-3-hydroxybutyrate to acetoacetate in 0.1m-sodium pyrophosphate buffer, pH8.5, at 25.0 degrees C, catalysed by d-3-hydroxybutyrate dehydrogenase (d-3-hydroxybutyrate-NAD(+) oxidoreductase, EC 1.1.1.30), was studied kinetically at chemical equilibrium by monitoring radioisotope redistribution with sodium dl-hydroxy[3-(14)C]butyrate and [4-(3)H]NAD(+)(labelled in the nicotinamide ring). 2. When all substrates are maintained at concentrations approaching saturation (approx. 3-50 times the K(m) values) the first-order rate constant for the enzyme-catalysed interconversion of NAD(+) and NADH is much smaller than that for the enzyme-catalysed interconversion of d-3-hydroxybutyrate and acetoacetate. 3. The rate of interconversion of NAD(+) and NADH increases initially with increasing concentrations of d-3-hydroxybutyrate and acetoacetate (ratio of concentrations maintained constant), passes through a maximum and approaches closely to zero at saturating concentrations of the latter substrates. 4. The rates of interconversion of NAD(+) and NADH and of d-3-hydroxybutyrate and acetoacetate increase with increasing concentration of NAD(+) (up to 66 times its K(m) value) and NADH (up to 180 times its K(m) value) (ratio of the concentrations of the nicotinamide nucleotides maintained constant). 5. These findings support the description of this catalysis as an ordered Bi Bi mechanism with no detectable alternative pathway, in which the interconversion of the central ternary complexes is not rate-limiting, and provide no evidence for the formation of dead-end complexes. 6. The solubility of 2,4-dinitrophenylhydrazine in HCl exhibits an acidity optimum, the maximum solubility at 25.0 degrees C (3.8mg/ml, 19mm) occurring at 2.29m-HCl; in solutions of this acidity acetone 2,4-dinitrophenylhydrazone is relatively insoluble (0.098mg/ml, 0.413mm).
Project description:Extracts of Rhodopseudomonas spheroides contain two ferrochelatases: one is soluble and forms metalloporphyrins from deuteroporphyrin and haematoporphyrin; the other is particulate and forms metalloporphyrins from protoporphyrin, mesoporphyrin, deuteroporphyrin and haematoporphyrin. Neither enzyme incorporates Mg(2+) into porphyrins or Fe(2+) into porphyrin cytochrome c. By using the particulate enzyme, plots of 1/v versus 1/s when one substrate was varied and the other kept constant showed that neither substrate affected the K(m) of the other. The suggested sequential mechanism for the reaction is supported by derivative plots of slopes and intercepts. The K(m) for deuteroporphyrin was 21.3mum and that for Co(2+) was 6.13mum. The enzyme incorporated Co(2+), Fe(2+), Zn(2+), Ni(2+) and Mn(2+); Cd(2+) was not incorporated and was an inhibitor, competitive with respect to Co(2+), non-competitive with respect to deuteroporphyrin. The K(i) for Cd(2+) was 0.73mum. Ferrochelatase was inhibited by protohaem, non-competitively with respect to Co(2+) or with respect to deuteroporphyrin. Inhibition by magnesium protoporphyrin was non-competitive with respect to deuteroporphyrin, uncompetitive with respect to Co(2+). The inhibitory concentrations of the metalloporphyrins are lower than those required for the inhibition of delta-aminolaevulate synthetase by protohaem. Fe(2+) is not incorporated aerobically into porphyrins unless an electron donor, succinate or NADH, is supplied; the low aerobic rate of metalloporphyrin synthesis obtained is insensitive to rotenone and antimycin. The rate of Fe(3+) incorporation increases as anaerobic conditions are achieved.
Project description:BACKGROUND: The interconversion of two important energy metabolites, 3-hydroxybutyrate and acetoacetate (the major ketone bodies), is catalyzed by D-3-hydroxybutyrate dehydrogenase (BDH1: EC 1.1.1.30), a NAD+-dependent enzyme. The eukaryotic enzyme is bound to the mitochondrial inner membrane and harbors a unique lecithin-dependent activity. Here, we report an advanced purification method of the mammalian BDH applied to the liver enzyme from jerboa (Jaculus orientalis), a hibernating rodent adapted to extreme diet and environmental conditions. RESULTS: Purifying BDH from jerboa liver overcomes its low specific activity in mitochondria for further biochemical characterization of the enzyme. This new procedure is based on the use of polyclonal antibodies raised against BDH from bacterial Pseudomonas aeruginosa. This study improves the procedure for purification of both soluble microbial and mammalian membrane-bound BDH. Even though the Jaculus orientalis genome has not yet been sequenced, for the first time a D-3-hydroxybutyrate dehydrogenase cDNA from jerboa was cloned and sequenced. CONCLUSION: This study applies immunoaffinity chromatography to purify BDH, the membrane-bound and lipid-dependent enzyme, as a 31 kDa single polypeptide chain. In addition, bacterial BDH isolation was achieved in a two-step purification procedure, improving the knowledge of an enzyme involved in the lipid metabolism of a unique hibernating mammal. Sequence alignment revealed conserved putative amino acids for possible NAD+ interaction.
Project description:1. The reversible NAD(+)-linked oxidation of d-3-hydroxybutyrate to acetoacetate in 0.1m-sodium pyrophosphate buffer, pH8.5, at 25.0 degrees C, catalysed by d-3-hydroxybutyrate dehydrogenase (d-3-hydroxybutyrate-NAD(+) oxidoreductase, EC 1.1.1.30), was studied by initial-velocity, dead-end inhibition and product-inhibition analysis. 2. The reactions were carried out on (a) the soluble enzyme from Rhodopseudomonas spheroides and (b) an insoluble derivative of this enzyme prepared by its covalent attachment to DEAE-cellulose by using 2-amino-4,6-dichloro-s-triazine as coupling agent. 3. The insolubilized enzyme preparation contained 5mg of protein/g wet wt. of total material, and when freshly prepared its specific activity was 1.2mumol/min per mg of protein, which is 67% of that of the soluble dialysed enzyme. 4. The reactions catalysed by both the enzyme in solution and the insolubilized enzyme were shown to follow sequential pathways in which the nicotinamide nucleotides bind obligatorily first to the enzyme. Evidence is presented for kinetically significant ternary complexes and that the rate-limiting step(s) of both catalyses probably involves isomerization of the enzyme-nicotinamide nucleotide complexes and/or dissociation of the nicotinamide nucleotides from the enzyme. Both catalyses therefore are probably best described as ordered Bi Bi mechanisms, possibly with multiple enzyme-nicotinamide nucleotide complexes. 5. The kinetic parameters and the calculable rate constants for the catalysis by the soluble enzyme are similar to the corresponding parameters and rate constants for the catalysis by the insolubilized enzyme.
Project description:1. The high-activity form of aminolaevulinate synthetase has been prepared from extracts of semi-anaerobically grown cells of Rhodopseudomonas spheroides, which were allowed to become activated in air. Specific activity was 130 000--170 000 nmol of aminolaevulinate/h per mg of protein at 37 degree C. 2. Enzyme fraction Ia prepared on DEAE-Sephadex was a mixture of four active enzymes, pI5.55, 5.45, 5.35 and 5.2, when prepared in either Tris or phosphate buffers and when extracts were activated by air or by cystine trisulphide. 3. The enzyme was further purified by preparative polyacrylamide-gel electrophoresis in imidazole/veronal buffer, pH 7.6, followed by gel filtration on Sephadex G-100 and concentration with DEAE-Sephadex. 4. The most active enzyme, pI 5.55, ran as a single protein band, mol.wt. 49 000, in sodium dodecyl sulphate and 2-mercaptoethanol. The apparent molecular weight under non-denaturing conditions was 62 000--68 000 on Sephadex G-100 or G-200, pH 7.5, and on polyacrylamide-gel electrophoresis, pH 8.5, at enzyme concentrations below 10 000 units/ml, i.e. less than 60 microgram of protein/ml, and the enzyme was mainly monomeric. 5. The enzyme was homogeneous by gel disc electrophoresis at pH 8.9 and 7.6, but a slightly more diffuse band of protein was obtained during electrophoresis in glycine buffer, pH 7.4. 6. Enzyme samples possessed an intrinsic yellow fluorescence when viewed under u.v. light and this fluorescence coincided exactly with enzymic activity on gel electrophoresis. Fluorescence maxima were 420 nm (excitation) and 495 nm (emission). 7. Radioactive 35S-labelled enzyme had 14 atoms of sulphur/mol of protein (or/40 leucine residues) of which 5--6 residues were cyst(e)ine and 8--9 residues were methionine. 8. Mo carbohydrate was detected apart from glucose, which prevented accurate determination of tryptophan with methanesulphonic acid and tryptamine.
Project description:1. A low-molecular-weight activator of 5-aminolaevulinate synthetase was detected in extracts of Rhodopseudomonas spheroides. The compound activates the enzyme extracted from oxygenated semi-anaerobically grown organisms by a factor of 6-8. 2. The activator was extensively purified, but owing to the exceedingly small amounts that could be extracted in the active form its structure was not determined. 3. The activator contains an acetylatable amino group; it is more stable at acid than at alkaline pH values; it is stable to treatment with I(2)-KI or potassium ferricyanide, but irreversibly inactivated by Na(2)S(2)O(4) or NaBH(4). 4. The chromatographic, electrophoretic, chemical and stability properties of the activator are similar to those of pteridines; purified activator preparations contain pteridines, as shown by their fluorescence spectrum. This does not, however, constitute an identification of the activator. 5. The activator enhances the activity of crude and partially purified enzyme and does not appear to require other endogenous factors or a supply of air to produce activation. Activation of the purified enzyme, however, requires the presence of either pyridoxal phosphate or sodium succinate. In the absence of both these factors the activator produces a time- and temperature-dependent decay of activity.
Project description:Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) films were prepared using a cast film technique. Dioxane was chosen over other polymer solvents as it resulted in homogenous films with better morphology. Several plasticizers with different molecular weights and concentrations were added to the biopolymer solution prior to casting. Thermal, crystalline, and permeability properties were analyzed by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and both water vapor and oxygen transmission rate analysis. In general, the addition of plasticizers decreased the glass transition temperature (Tg), cold crystallization temperatures (Tcc), melting temperatures, as well as crystallinity degrees and increased the crystallite sizes and water vapor and oxygen transmission rates. The use of isosorbide and low-molecular-weight poly(ethylene glycol) (PEG) lowered the Tg around 30 °C at the highest used concentration, also being the most effective in increasing the crystallite size. When considering isosorbide and low-molecular-weight poly(ethylene glycol) (PEG) as very good plasticizers for PHBH, the question of which plasticizer to use strongly relies on the desired PHBH application.
Project description:Differential centrifugation of suspensions of French-press-disrupted Rhodopseudomonas spheroides yielded a light particulate fraction that was different in many properties from the bulk membrane fraction. It was enriched in cytochrome c and had a low cytochrome b content. When prepared from photosynthetically grown cells this fraction had a very low specific bacteriochlorophyll content. The cytochrome c of the light particles differed in absorption maxima at 77K from cytochrome c2 attached to membranes; there was pronounced splitting of the alpha-band, as is found in cytochrome c2 free in solution. Potentiometric titration at A552--A540 showed the presence of two components that fitted an n = 1 titration; one component had a midpoint redox potential of +345mV, like cytochrome c2 in solution, and the second had E0' at pH 7.0 of +110 mV, and they were present in a ratio of approx. 2:3. Difference spectroscopy at 77K showed that the spectra of the two components were very similar. More of a CO-binding component was present in particles from photosynthetically grown cells. Light membranes purified by centrifugation on gradients of 5--60% (w/w) sucrose retained the two c cytochromes; they contained no detectable succinate-cytochrome c reductase or bacteriochlorophyll and very little ubiquinone, but they contained NADH-cytochrome c reductase and some phosphate. Electrophoresis on sodium dodecyl sulphate/polyacrylamide gels showed that the light membranes of aerobically and photosynthetically grown cells were very similar and differed greatly from other membrane fractions of R. spheroides.
Project description:1. delta-Aminolaevulate synthetase from Rhodopseudomonas spheroides grown semi-anaerobically undergoes a spontaneous activation during the first hour after the disruption of cells when homogenates are stored at 4 degrees . 2. After cultures of R. spheroides growing semi-anaerobically are oxygenated no activation of delta-aminolaevulate synthetase occurs in cell extracts. Cessation of activation in extracts is almost complete 10min. after oxygenation of cells has begun. 3. A heat-stable fraction of low molecular weight from semi-anaerobic cells reactivates delta-aminolaevulate synthetase in extracts of oxygenated cells and appears to contain a compound responsible for the spontaneous activation. 4. A heat-stable fraction of low molecular weight from oxygenated cells inhibits the spontaneous activation in extracts of semi-anaerobic cells. 5. The effect of oxygen on the rate of bacteriochlorophyll synthesis in R. spheroides may be mediated through alterations in the concentrations of a low-molecular-weight activator and inhibitor of delta-aminolaevulate synthetase.
Project description:3-Hydroxybutyrate dehydrogenase (EC 1.1.1.30) and malate dehydrogenase (EC 1.1.1.37) were purified to homogeneity on a large scale involving only two sequential affinity-chromatography steps on two triazine dye-Sepharose matrices. Recoveries of both enzymes were in excess of 60%. Malate dehydrogenase could also be purified by a combination of triazine dye affinity chromatography and gel filtration on Ultrogel AcA-44, but this offered no significant advantage over the purely affinity procedure.