A three-dimensional working model for a guide RNA from Trypanosoma brucei.
Ontology highlight
ABSTRACT: RNA editing in protozoan parasites is a mitochondrial RNA processing reaction in which exclusively uridylate residues are inserted into, and less frequently deleted from, pre-mRNAs. Molecules central to the process are so-called guide RNAs (gRNAs) which function as templates in the reaction. For a detailed molecular understanding of the mechanism of the editing process knowledge of structural features of gRNAs will be essential. Here we report on a computer-assisted molecular modelling approach to construct the first three-dimensional gRNA model for gND7-506, a ND7-specific gRNA from Trypanosoma brucei. The modelling process relied on chemical modification and enzymatic probing data and was validated by in vitro mutagenesis experiments. The model predicts a reasonably compact structure, where two stem/loop secondary structure elements are brought into close proximity by a triple A tertiary interaction, forming a core element within the centre of the molecule. The model further suggests that the surface of the gRNA is primarily made up of the sugar-phoshate backbone. On the basis of the model, footprinting experiments of gND7-506 in a complex with the gRNA binding protein gBP21 could successfully be interpreted and provide a first picture for the assembly of gRNAs within a ribonucleoprotein complex.
SUBMITTER: Hermann T
PROVIDER: S-EPMC146733 | biostudies-other | 1997 Jun
REPOSITORIES: biostudies-other
ACCESS DATA