Domains 16 and 17 of tropoelastin in elastic fibre formation.
Ontology highlight
ABSTRACT: Naturally occurring mutations are useful in identifying domains that are important for protein function. We studied a mutation in the elastin gene, 800-3G>C, a common disease allele for SVAS (supravalvular aortic stenosis). We showed in primary skin fibroblasts from two different SVAS families that this mutation causes skipping of exons 16-17 and results in a stable mRNA. Tropoelastin lacking domains 16-17 (Delta16-17) was synthesized efficiently and secreted by transfected retinal pigment epithelium cells, but showed the deficient deposition into the extracellular matrix compared with normal as demonstrated by immunofluorescent staining and desmosine assays. Solid-phase binding assays indicated normal molecular interaction of Delta16-17 with fibrillin-1 and fibulin-5. However, self-association of Delta16-17 was diminished as shown by an elevated coacervation temperature. Moreover, negative staining electron microscopy confirmed that Delta16-17 was deficient in forming fibrillar polymers. Domain 16 has high homology with domain 30, which can form a beta-sheet structure facilitating fibre formation. Taken together, we conclude that domains 16-17 are important for self-association of tropoelastin and elastic fibre formation. This study is the first to discover that domains of elastin play an essential role in elastic fibre formation by facilitating homotypic interactions.
Project description:Elastic fibres are essential for normal physiology in numerous tissues, including arteries, lungs and skin. Fibulin-4 is an elastic-fibre-associated glycoprotein that is indispensable for elastic-fibre formation in mice. However, the mechanism by which fibulin-4 executes this function remains to be determined. Here, we established an in vitro functional assay system in which fibulin-4 was knocked down in human foreskin fibroblasts using siRNA (small interfering RNA) technology. With two different siRNAs, substantial knockdown of fibulin-4 was achieved, and this suppression was associated with impaired elastic-fibre formation by the fibroblasts. Real-time reverse transcription-PCR analysis showed that knockdown of fibulin-4 expression was accompanied by reduced expression of tropoelastin mRNA. Further analysis showed that this decrease was caused by transcriptional down-regulation of tropoelastin. This effect was selective, since the mRNA level of other elastic-fibre-associated proteins, including fibrillin-1, lysyl oxidase and lysyl oxidase-like-1, was not affected. Moreover, addition of conditioned medium from cultures of CHO (Chinese-hamster ovary) cells overexpressing fibulin-4 stimulated tropoelastin expression and elastic-fibre formation in cultures of Williams-Beuren-syndrome fibroblasts. Knocking down or knocking out fibulin-4 in mice led to a decrease in tropoelastin expression in the aorta. These results indicate that fibulin-4, considered as a structural protein, may also participate in regulating elastic-fibre formation in human cells through an unanticipated mechanism, namely the regulation of tropoelastin expression.
Project description:Elastin is an essential protein found in a variety of tissues where resilience and flexibility are needed, such as the skin and the heart. When aiming to engineer suitable implants, elastic fibres are needed to allow adequate tissue renewal. However, the visualization of human elastogenesis remains in the dark. To date, the visualization of human tropoelastin (TE) production in a human cell context and its fibre assembly under live cell conditions has not been achieved. Here, we present a long-term cell culture model of human dermal fibroblasts expressing fluorescence-labelled human TE. We employed a lentiviral system to stably overexpress Citrine-labelled TE to build a fluorescent fibre network. Using immunofluorescence, we confirmed the functionality of the Citrine-tagged TE. Furthermore, we visualized the fibre assembly over the course of several days using confocal microscopy. Applying super resolution microscopy, we were able to investigate the inner structure of the elastin-fibrillin-1 fibre network. Future investigations will allow the tracking of TE produced under various conditions. In tissue engineering applications the fluorescent fibre network can be visualized under various conditions or it serves as a tool for investigating fibre degradation processes in disease-in-a-dish-models.
Project description:Elastic fibres are essential components of all mammalian elastic tissues such as blood vessels, lung and skin, and are critically important for the mechanical properties they endow. The main components of elastic fibres are elastin and fibrillin, where correct formation of elastic fibres requires a fibrillin microfibril scaffold for the deposition of elastin. It has been demonstrated previously that the interaction between fibrillin and tropoelastin, the elastin precursor, increases the rate of assembly of tropoelastin. Furthermore, tropoelastin and fibrillin can be cross-linked by transglutaminase-2, but the function of cross-linking on their elastic properties is yet to be elucidated. Here we show that transglutaminase cross-linking supports formation of a 1:1 stoichiometric fibrillin-tropoelastin complex. SAXS data show that the complex retains features of the individual proteins but is elongated supporting end-to-end assembly. Elastic network models were constructed to compare the dynamics of tropoelastin and fibrillin individually as well as in the cross-linked complex. Normal mode analysis was performed to determine the structures' most energetically favourable, biologically accessible motions which show that within the complex, tropoelastin is less mobile and this molecular stabilisation extends along the length of the tropoelastin molecule to regions remote from the cross-linking site. Together, these data suggest a long-range stabilising effect of cross-linking that occurs due to the covalent linkage of fibrillin to tropoelastin. This work provides insight into the interactions of tropoelastin and fibrillin and how cross-link formation stabilises the elastin precursor so it is primed for elastic fibre assembly.
Project description:MFAP4 (microfibrillar-associated protein 4) is an extracellular glycoprotein found in elastic fibers without a clearly defined role in elastic fiber assembly. In the present study, we characterized molecular interactions between MFAP4 and elastic fiber components. We established that MFAP4 primarily assembles into trimeric and hexameric structures of homodimers. Binding analysis revealed that MFAP4 specifically binds tropoelastin and fibrillin-1 and -2, as well as the elastin cross-linking amino acid desmosine, and that it co-localizes with fibrillin-1-positive fibers in vivo. Site-directed mutagenesis disclosed residues Phe(241) and Ser(203) in MFAP4 as being crucial for type I collagen, elastin, and tropoelastin binding. Furthermore, we found that MFAP4 actively promotes tropoelastin self-assembly. In conclusion, our data identify MFAP4 as a new ligand of microfibrils and tropoelastin involved in proper elastic fiber organization.
Project description:Studies in vitro suggest that the C-terminus of tropoelastin mediates elastin polymerization through an interaction with microfibril-associated proteins. In this study we have used cultured auricular chondrocytes as a model system to examine whether this interaction is critical for elastic fibre formation in vivo. Auricular chondrocytes, which deposit an abundant elastic fibre matrix, were cultured in the presence of Fab fragments of antibodies directed against the C-terminus (CTe) or an N-terminal domain (ATe) of tropoelastin. Immunofluorescent staining of the extracellular matrix deposited by the cells showed that the CTe antibody inhibited the deposition of elastin without affecting microfibril structure. Cells grown under identical conditions in the presence of ATe, however, formed fibres that stained normally for both elastin and microfibril proteins. Chondrocytes cultured in the presence of microfibril-associated glycoprotein (MAGP):21-35, an antibody directed against a domain near the N-terminus of MAGP, did not organize tropoelastin into fibres. However, immunostaining for MAGP and fibrillin revealed normal microfibrils. In agreement with the immunofluorescence staining patterns, fewer elastin-specific cross-links, indicative of insoluble elastin, were detected in the extracellular matrix of cells cultured in the presence of CTe. The medium from these cultures, however, contained more soluble elastin, consistent with an antibody-induced alteration of elastin assembly but not its synthesis. Northern analysis of antibody-treated and control cultures substantiated equivalent levels of tropoelastin mRNA. These results confirm that the C-terminus of tropoelastin interacts with microfibrils during the assembly of elastic fibres. Further, the results suggest that the interaction between tropoelastin and microfibrils might be mediated by a domain involving the N-terminal half of MAGP.
Project description:Homocystinuria caused by cystathionine-beta-synthase deficiency represents a severe form of homocysteinemias, which generally result in various degrees of elevated plasma homocysteine levels. Marfan syndrome is caused by mutations in fibrillin-1, which is one of the major constituents of connective tissue microfibrils. Despite the fundamentally different origins, both diseases share common clinical symptoms in the connective tissue such as long bone overgrowth, scoliosis, and ectopia lentis, whereas they differ in others. Fibrillin-1 contains approximately 13% cysteine residues and can be modified by homocysteine. We report here that homocysteinylation affects functional properties of fibrillin-1 and tropoelastin. We used recombinant fragments spanning the entire fibrillin-1 molecule to demonstrate that homocysteinylation, but not cysteinylation leads to abnormal self-interaction, which was attributed to a reduced amount of multimerization of the fibrillin-1 C terminus. The deposition of the fibrillin-1 network by human dermal fibroblasts was greatly reduced by homocysteine, but not by cysteine. Furthermore, homocysteinylation, but not cysteinylation of elastin-like polypeptides resulted in modified coacervation properties. In summary, the results provide new insights into pathogenetic mechanisms potentially involved in cystathionine-beta-synthase-deficient homocystinuria.
Project description:Tropoelastin is an extracellular matrix protein that assembles into elastic fibers that provide elasticity and strength to vertebrate tissues. Although the contributions of specific tropoelastin regions during each stage of elastogenesis are still not fully understood, studies predominantly recognize the central hinge/bridge and C-terminal foot as the major participants in tropoelastin assembly, with a number of interactions mediated by the abundant positively charged residues within these regions. However, much less is known about the importance of the rarely occurring negatively charged residues and the N-terminal coil region in tropoelastin assembly. The sole negatively charged residue in the first half of human tropoelastin is aspartate 72. In contrast, the same region comprises 17 positively charged residues. We mutated this aspartate residue to alanine and assessed the elastogenic capacity of this novel construct. We found that D72A tropoelastin has a decreased propensity for initial self-association, and it cross-links aberrantly into denser, less porous hydrogels with reduced swelling properties. Although the mutant can bind cells normally, it does not form elastic fibers with human dermal fibroblasts and forms fewer atypical fibers with human retinal pigmented epithelial cells. This impaired functionality is associated with conformational changes in the N-terminal region. Our results strongly point to the role of the Asp-72 site in stabilizing the N-terminal segment of human tropoelastin and the importance of this region in facilitating elastic fiber assembly.
Project description:The tropoelastin monomer undergoes stages of association by coacervation, deposition onto microfibrils, and cross-linking to form elastic fibers. Tropoelastin consists of an elastic N-terminal coil region and a cell-interactive C-terminal foot region linked together by a highly exposed bridge region. The bridge region is conveniently positioned to modulate elastic fiber assembly through association by coacervation and its proximity to dominant cross-linking domains. Tropoelastin constructs that either modify or remove the entire bridge and downstream regions were assessed for elastogenesis. These constructs focused on a single alanine substitution (R515A) and a truncation (M155n) at the highly conserved arginine 515 site that borders the bridge. Each form displayed less efficient coacervation, impaired hydrogel formation, and decreased dermal fibroblast attachment compared to wild-type tropoelastin. The R515A mutant protein additionally showed reduced elastic fiber formation upon addition to human retinal pigmented epithelium cells and dermal fibroblasts. The small-angle X-ray scattering nanostructure of the R515A mutant protein revealed greater conformational flexibility around the bridge and C-terminal regions. This increased flexibility of the R515A mutant suggests that the tropoelastin R515 residue stabilizes the structure of the bridge region, which is critical for elastic fiber assembly.
Project description:Leptospira spp., the causative agents of leptospirosis, adhere to components of the extracellular matrix, a pivotal role for colonization of host tissues during infection. Previously, we and others have shown that Leptospira immunoglobulin-like proteins (Lig) of Leptospira spp. bind to fibronectin, laminin, collagen, and fibrinogen. In this study, we report that Leptospira can be immobilized by human tropoelastin (HTE) or elastin from different tissues, including lung, skin, and blood vessels, and that Lig proteins can bind to HTE or elastin. Moreover, both elastin and HTE bind to the same LigB immunoglobulin-like domains, including LigBCon4, LigBCen7'-8, LigBCen9, and LigBCen12 as demonstrated by enzyme-linked immunosorbent assay (ELISA) and competition ELISAs. The LigB immunoglobulin-like domain binds to the 17th to 27th exons of HTE (17-27HTE) as determined by ELISA (LigBCon4, K(D) = 0.50 microm; LigBCen7'-8, K(D) = 0.82 microm; LigBCen9, K(D) = 1.54 microm; and LigBCen12, K(D) = 0.73 microm). The interaction of LigBCon4 and 17-27HTE was further confirmed by steady state fluorescence spectroscopy (K(D) = 0.49 microm) and ITC (K(D) = 0.54 microm). Furthermore, the binding was enthalpy-driven and affected by environmental pH, indicating it is a charge-charge interaction. The binding affinity of LigBCon4D341N to 17-27HTE was 4.6-fold less than that of wild type LigBCon4. In summary, we show that Lig proteins of Leptospira spp. interact with elastin and HTE, and we conclude this interaction may contribute to Leptospira adhesion to host tissues during infection.
Project description:Versican is an extracellular matrix (ECM) molecule that interacts with other ECM components to influence ECM organization, stability, composition, and cell behavior. Versican is known to increase in a number of cancers, but little is known about how versican influences the amount and organization of the ECM components in the tumor microenvironment. In the present study, we modulated versican expression using siRNAs in the human leiomyosarcoma (LMS) smooth muscle cell line SK-LMS-1, and observed the formation of elastin and elastic fibers in vitro and also in vivo in a nude mouse tumor model. Constitutive siRNA-directed knockdown of versican in LMS cells resulted in increased levels of elastin, as shown by immunohistochemical staining of the cells in vitro, and by mRNA and protein analyses. Moreover, versican siRNA LMS cells, when injected into nude mice, generated smaller tumors that had significantly greater immunohistochemical and histochemical staining for elastin when compared to control tumors. Additionally, microarray analyses were used to determine the influence of versican isoform modulation on gene expression profiles, and to identify genes that influence and relate to the process of elastogenesis. cDNA microarray analysis and TaqMan low density array validation identified previously unreported genes associated with downregulation of versican and increased elastogenesis. These results highlight an important role for the proteoglycan versican in regulating the expression and assembly of elastin and the phenotype of LMS cells.