Aminoguanidine prevents fructose-induced deterioration in left ventricular-arterial coupling in Wistar rats.
Ontology highlight
ABSTRACT: BACKGROUND AND PURPOSE: Aminoguanidine (AG), an inhibitor of advanced glycation endproducts, has been identified as a prominent agent that prevents the fructose-induced arterial stiffening in male Wistar rats. Our aims were to examine whether AG produced benefits on the left ventricular (LV)-arterial coupling in fructose-fed (FF) animals in terms of the ventricular and arterial chamber properties. EXPERIMENTAL APPROACH: Rats given 10% fructose in drinking water (FF) were daily treated with AG (50 mg x kg(-1), i.p.) for 2 weeks and compared with the untreated FF group. In anaesthetised rats, LV pressure and ascending aortic flow signals were recorded to calculate LV end-systolic elastance (E(es), an indicator of myocardial contractility) and effective arterial volume elastance (E(a)). The optimal afterload (Q(load)) determined by the ratio of E(a) to E(es) was used to measure the coupling efficiency between the left ventricle and its vasculature. KEY RESULTS: There was a significant interaction between fructose and AG in their effects on E(a). Fructose loading significantly elevated E(a) and AG prevented the fructose-derived deterioration in arterial chamber elastance. Both fructose and AG affected E(es) and Q(load), and there was an interaction between fructose and AG for these two variables. Both E(es) and Q(load) exhibited a decline with fructose feeding but showed a significant rise after AG treatment in the FF rats. CONCLUSIONS AND IMPLICATIONS: AG prevented not only the contractile dysfunction of the heart caused by fructose loading, but also the fructose-induced deterioration in matching left ventricular function to the arterial system.
Project description:1. In a recent in vivo study, liriodenine, an aporphine alkaloid, has been identified as a prominent anti-arrhythmic agent that can prevent rats' sudden deaths, even at the dose as low as 10(-7) g kg(-1). The aim of this study was to determine whether liriodenine at its effective anti-arrhythmic dose of 10(-7) g kg(-1) had effects on the left ventricular (LV)-arterial coupling in Wistar rats. 2. LV pressure and ascending aortic flow signals were recorded to construct the ventricular and arterial end-systolic pressure-stroke volume relationships to calculate LV end-systolic elastance (E(es)) and effective arterial volume elastance (E(a)), respectively. The optimal afterload (Q(load)) determined by the ratio of E(a) to E(es) was used to measure the optimality of energy transmission from the left ventricle to the arterial system. 3. Liriodenine at the dose of 10(-7) g kg(-1) showed no significant changes in basal heart rate (HR), cardiac output (CO), LV end-systolic pressure (P(es)), E(a), E(es), and Q(load). 4. By contrast, liriodenine at the dose of 10(-6) g kg(-1) produced a significant fall of 2.0% in HR and a significant rise of 5.8% in CO, but no significant change in P(es). Moreover, liriodenine administration of 10(-6) g kg(-1) to rats significantly decreased E(es) by 8.5% and E(a) by 10.6%, but did not change Q(load). 5. We conclude that liriodenine at the dose of 10(-7) g kg(-1) has no effects on the mechanical properties of the heart and the vasculature and the matching condition for the left ventricle coupled to its vasculature in rats. Even at 10 times the effective anti-arrhythmic dose, liriodenine shows no effects on the efficiency of energy transferred from the left ventricle to the arterial system.
Project description:Obesity increases the risk for cardiomyopathy in the absence of comorbidities. Myocardial structure is modified by dietary fatty acids. Left ventricular hypertrophy is associated with Western (WES) diet consumption, whereas intake of n-3 polyunsaturated fatty acids is associated with antihypertrophic effects. We previously observed no attenuation of left ventricular thickening after 3 months of docosahexaenoic acid (DHA) supplementation of a WES diet, compared with WES diet intake alone, in rats that had similar weight, adiposity, and insulin sensitivity to control animals. The objective of this study was to define left ventricular gene expression in these animals to determine whether diet alone was associated with a physiologic or pathologic hypertrophic response. We hypothesized that WES diet consumption would favor a pathologic or maladaptive myocardial gene expression pattern and that DHA supplementation would favor a physiologic or adaptive response. Microarray analysis identified 64 transcripts that were differentially expressed (P ≤ .001) within one or more treatment comparisons. Using quantitative real-time polymerase chain reaction, 29 genes with fold change at least 1.74 were successfully validated; all but 3 had similar directionality to that observed using microarray, and 2 genes, connective tissue growth factor and cathepsin M, were differentially expressed according to diet. WES blot analysis was performed on 4 proteins relevant to myocardial hypertrophy and metabolism. Acyl-CoA thioesterase 1, B-cell translocation gene 2, and carbonic anhydrase III showed directional change consistent with gene expression. Retinol saturase (all-trans-retinol 13,14-reductase), although not consistent with gene expression, was different according to diet, with increased concentrations in WES-fed rats compared with control and DHA-supplemented animals. Diet did not distinguish a transcriptome reflecting physiologic or pathologic myocardial hypertrophy; furthermore, the modest changes observed suggest that obesity and associated comorbidities may play a larger role than mere dietary fatty acid composition in development of cardiomyopathy.
Project description:Apelin plays important roles in cardiovascular homeostasis. However, its effects on the mechanoenergetics of heart failure (HF) are unavailable. We attempted to investigate the effects of apelin on the left ventricular-arterial coupling (VAC) and mechanical efficiency in rats with HF. HF was induced in rats by the ligation of the left coronary artery. The ischemic HF rats were treated with apelin or saline for 12 weeks. The sham-operated animals served as the control. The left ventricular (LV) afterload and the systolic and diastolic functions, as well as the mechanoenergetic indices were estimated from the pressure-volume loops. Myocardial fibrosis by Masson's trichrome staining, myocardial apoptosis by TUNEL, and collagen content in the aorta as well as media area in the aorta and the mesenteric arteries were determined. Our data indicated that HF rats manifested an increased arterial load (Ea), a declined systolic function (reduced ejection fraction, +dP/dtmax, end-systolic elastance, and stroke work), an abnormal diastolic function (elevated end-diastolic pressure, ?, and declined -dP/dtmax), and decreased mechanical efficiency. Apelin treatment improved those indices. Concomitantly, increased fibrosis in the LV myocardium and the aorta and enhanced apoptosis in the LV were partially restored by apelin treatment. A declined wall-to-lumen ratio in the mesenteric arteries of the untreated HF rats was further reduced in the apelin-treated group. We concluded that the rats with ischemic HF were characterized by deteriorated LV mechanoenergetics. Apelin improved mechanical efficiency, at least in part, due to the inhibiting cardiac fibrosis and apoptosis in the LV myocardium, reducing collagen deposition in the aorta and dilating the resistant artery.
Project description:Aortic stenosis, hypertension, and left ventricular hypertrophy often coexist in the elderly, causing a detrimental mismatch in coupling between the heart and vasculature known as ventricular-vascular (VA) coupling. Impaired left VA coupling, a critical aspect of cardiovascular dysfunction in aging and disease, poses significant challenges for optimal cardiovascular performance. This systematic review aims to assess the impact of simulating and studying this coupling through computational models. By conducting a comprehensive analysis of 34 relevant articles obtained from esteemed databases such as Web of Science, Scopus, and PubMed until July 14, 2022, we explore various modeling techniques and simulation approaches employed to unravel the complex mechanisms underlying this impairment. Our review highlights the essential role of computational models in providing detailed insights beyond clinical observations, enabling a deeper understanding of the cardiovascular system. By elucidating the existing models of the heart (3D, 2D, and 0D), cardiac valves, and blood vessels (3D, 1D, and 0D), as well as discussing mechanical boundary conditions, model parameterization and validation, coupling approaches, computer resources and diverse applications, we establish a comprehensive overview of the field. The descriptions as well as the pros and cons on the choices of different dimensionality in heart, valve, and circulation are provided. Crucially, we emphasize the significance of evaluating heart-vessel interaction in pathological conditions and propose future research directions, such as the development of fully coupled personalized multidimensional models, integration of deep learning techniques, and comprehensive assessment of confounding effects on biomarkers.
Project description:Pulmonary arterial hypertension (PAH) is a progressive disease caused by increased pulmonary artery pressure and pulmonary vascular resistance, eventually leading to right heart failure until death. Soluble guanylate cyclase (sGC) has been regarded as an attractive drug target in treating PAH. In this study, we discovered that maprotiline, a tetracyclic antidepressant, bound to the full-length recombinant sGC with a high affinity (K D = 0.307 μM). Further study demonstrated that maprotiline concentration-dependently inhibited the proliferation of hypoxia-induced human pulmonary artery smooth muscle cells. Moreover, in a monocrotaline (MCT) rat model of PAH, maprotiline (ip, 10 mg/kg once daily) reduced pulmonary hypertension, inhibited the development of right ventricular hypertrophy and pathological changes of the pulmonary vascular remodeling. Taken together, our studies showed that maprotiline may contribute to attenuate disease progression of pulmonary hypertension.
Project description:Left ventricular hypertrophy (LVH) is associated with decreased responsiveness of renal α1-adrenoreceptors subtypes to adrenergic agonists. Nitric oxide donors are known to have antihypertrophic effects however their impact on responsiveness of renal α1-adrenoreceptors subtypes is unknown. This study investigated the impact of nitric oxide (NO) and its potential interaction with the responsiveness of renal α1-adrenoreceptors subtypes to adrenergic stimulation in rats with left ventricular hypertrophy (LVH). This study also explored the impact of NO donor on CSE expression in normal and LVH kidney. LVH was induced using isoprenaline and caffeine in drinking water for 2 weeks while NO donor (L-arginine, 1.25g/Lin drinking water) was given for 5 weeks. Intrarenal noradrenaline, phenylephrine and methoxamine responses were determined in the absence and presence of selective α1-adrenoceptor antagonists, 5- methylurapidil (5-MeU), chloroethylclonidine (CeC) and BMY 7378. Renal cortical endothelial nitric oxide synthase mRNA was upregulated 7 fold while that of cystathione γ lyase was unaltered in the NO treated LVH rats (LVH-NO) group compared to LVH group. The responsiveness of renal α1A, α1B and α1D-adrenoceptors in the low dose and high dose phases of 5-MeU, CEC and BMY7378 to adrenergic agonists was increased along with cGMP in the kidney of LVH-NO group. These findings suggest that exogenous NO precursor up-regulated the renal eNOS/NO/cGMP pathway in LVH rats and resulted in augmented α1A, α1B and α1D adrenoreceptors responsiveness to the adrenergic agonists. There is a positive interaction between H2S and NO production in normal animals but this interaction appears absent in LVH animals.
Project description:Increased arterial stiffness elevates aortic load, which can have adverse impacts on left ventricular (LV) function and contribute to the onset of heart failure. This impact is known to be more pronounced in women. Optimal coordination between ventricular contraction and the arterial system is required to maintain efficient cardiac function. This study aimed to investigate sex differences in the impact of ventricular-arterial coupling (VAC) on LV function in patients with hypertension at rest and after handgrip exercise. Echocardiographic indexes of LV volumes, systolic function, and diastolic function were obtained in the usual way. Effective arterial elastance (EA) and index (EAI) were calculated from stroke volume measured using LV outflow waveform. Effective LV end-systolic elastance (ELV) and index (ELVI) were obtained using the single-beat method. Central aortic pressure waveform was recorded using the applanation tonometry. Characteristic impedance (Zc) of aortic root and reflection magnitude (RM) was calculated after Fourier transformation of both aortic pressure and flow waveforms. Sixty-four patients (31 women and 33 men) with hypertension were enrolled. Women showed higher ELVI (1.33±0.34 vs. 1.10±0.29 mmHg/ml∙m2, P = 0.004) and EAI (1.14±0.25 vs. 0.93±0.26 mmHg/ml∙m2, P = 0.001), but VAC was not different (women: 0.88±0.17 vs. men: 0.85±0.11, P = 0.431). Zc and RM were not different between women and men. After handgrip exercise, an increase in ELVI (P = 0.021) and a decrease in VAC (P = 0.035) were observed specifically in men, with no corresponding changes noted in women. In women, VAC was significantly associated with E' velocity (beta -0.344, P = 0.029) and left ventricular global longitudinal strain (beta 0.470, P = 0.012) after adjustment, but in men, no association was found. Hypertensive women demonstrated greater stiffness in both the left ventricle and arterial systems, along with impaired LV contractile reserve in response to handgrip exercise, as compared to men. The ventricular-arterial mismatch had a notable impact on LV diastolic and systolic dysfunction only in women, but not in men.
Project description:BackgroundPatients with dilated cardiomyopathy, increased ventricular volume, pressure overload or dysynergistic ventricular contraction and relaxation are susceptible to develop serious ventricular arrhythmias (VA). These phenomena are primarily based on a theory of mechanoelectric feedback, which reflects mechanical changes that produce alterations in electrical activity. However, very few systematic studies have provided evidence of the preventive effects of artemisinin (ART) on VA in response to left ventricle (LV) afterload increases. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that regulate expression of multiple genes by suppressing mRNAs post-transcriptionally.AimsThe aims of this study were to investigate preventive effects of ART on mechanical VA and the underling molecular mechanisms of differentially expressed miRNAs (DEMs).MethodsFor the study, 70 male Wistar rats were randomly divided into seven groups: group 1 was a control group (sham surgery); group 2 was a model group that underwent transverse aortic constriction (TAC) surgery; groups 3, 4, 5 and 6 were administered ART 75, 150, 300 and 600 mg/kg before TAC surgery, respectively; and group 7 was administered verapamil (VER) 1 mg/kg before TAC surgery. A ventricular arrhythmia score (VAS) was calculated to evaluate preventive effects of ART and VER on mechanical VA. The high throughput sequencing-based approach provided DEMs that were altered by ART pretreatment between group 2 and group 4. All predicted mRNAs of DEMs were enriched by gene ontology (GO) and Kyoto Encyclopedia annotation of Genes and Genomes (KEGG) databases. These DEMs were validated by a real time quantitative polymerase chain reaction (RT-qPCR).ResultsThe average VASs of groups 3, 4, 5, 6 and 7 were significantly reduced compared with those of group 2 (2.70 ± 0.48, 1.70 ± 0.95, 2.80 ± 0.79, 2.60 ± 0.97, 1.40 ± 0.52, vs 3.70 ± 0.67, p < 0.01, respectively). The three top GO terms were neuron projection, organ morphogenesis and protein domain specific binding. KEGG enrichment of the 16 DEMs revealed that MAPK, Wnt and Hippo signaling pathways were likely to play a substantial role in the preventive effects of ART on mechanical VA in response to LV afterload increases. All candidate DEMs with the exception of rno-miR-370-3p, rno-miR-6319, rno-miR-21-3p and rno-miR-204-5p showed high expression levels validated by RT-qPCR.ConclusionsArtemisinin could prevent mechanical VA in response to LV afterload increases. Validated DEMs could be biomarkers and therapeutic targets of ART regarding its prevention of VA induced by pressure overload. The KEGG pathway and GO annotation analyses of the target mRNAs could indicate the potential functions of candidate DEMs. These results will help to elucidate the functional and regulatory roles of candidate DEMs associated with antiarrhythmic effects of ART.
Project description:To maintain efficient myocardial function, optimal coordination between ventricular contraction and the arterial system is required. Exercise-based cardiac rehabilitation (CR) has been demonstrated to improve left ventricular (LV) function. This study aimed to investigate the impact of CR on ventricular-arterial coupling (VAC) and its components, as well as their associations with changes in LV function in patients with acute myocardial infarction (AMI) and preserved or mildly reduced ejection fraction (EF). Effective arterial elastance (EA) and index (EAI) were calculated from the stroke volume and brachial systolic blood pressure. Effective LV end-systolic elastance (ELV) and index (ELVI) were obtained using the single-beat method. The characteristic impedance (Zc) of the aortic root was calculated after Fourier transformation of both aortic pressure and flow waveforms. Pulse wave separation analysis was performed to obtain the reflection magnitude (RM). An exercise-based, outpatient cardiac rehabilitation (CR) program was administered for up to 6 months. Twenty-nine patients were studied. However, eight patients declined to participate in the CR program and were subsequently classified as the non-CR group. At baseline, E' velocity showed significant associations with EAI (beta -0.393; P = 0.027) and VAC (beta -0.375; P = 0.037). There were also significant associations of LV global longitudinal strain (LV GLS) with EAI (beta 0.467; P = 0.011). Follow-up studies after a minimum of 6 months demonstrated a significant increase in E' velocity (P = 0.035), improved EF (P = 0.010), and LV GLS (P = 0.001), and a decreased EAI (P = 0.025) only in the CR group. Changes in E' velocity were significantly associated with changes in EAI (beta -0.424; P = 0.033). Increased aortic afterload and VA mismatch were associated with a negative impact on both LV diastolic and systolic function. The outpatient CR program effectively decreased aortic afterload and improved LV diastolic and systolic dysfunction in patients with AMI and preserved or mildly reduced EF.
Project description:The chronic high-dose right ventricular apical (RVA) pacing may have deleterious effects on left ventricular (LV) systolic function. We hypothesized that the expression changes of genes regulating cardiomyocyte energy metabolism and contractility were associated with deterioration of LV function in patients who underwent chronic RVA pacing. Sixty patients with complete atrioventricular block and preserved ejection fraction (EF) who underwent pacemaker implantation were randomly assigned to either RVA pacing (n = 30) group or right ventricular outflow tract (RVOT) pacing (n = 30) group. The mRNA levels of OPA1 and SERCA2a were significantly lower in the RVA pacing group at 1 month's follow-up (both p < 0.001). Early changes in the expression of selected genes OPA1 and SERCA2a were associated with deterioration in global longitudinal strain (GLS) that became apparent months later (p = 0.002 and p = 0.026, resp.) The altered expressions of genes that regulate cardiomyocyte energy metabolism and contractility measured in the peripheral blood at one month following pacemaker implantation were associated with subsequent deterioration in LV dyssynchrony and function in patients with preserved LVEF, who underwent RVA pacing.