Lovastatin protects human endothelial cells from the genotoxic and cytotoxic effects of the anticancer drugs doxorubicin and etoposide.
Ontology highlight
ABSTRACT: BACKGROUND AND PURPOSE: 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) are frequently used lipid-lowering drugs. Moreover, they exert pleiotropic effects on cellular stress responses and death. Here, we analysed whether lovastatin affects the sensitivity of primary human endothelial cells (HUVEC) to the anticancer drug doxorubicin. EXPERIMENTAL APPROACH: We investigated whether pretreatment of HUVEC with low dose of lovastatin influences the cellular sensitivity to doxorubicin. To this end, cell viability, proliferation and apoptosis as well as DNA damage-triggered stress response were analysed. KEY RESULTS: Lovastatin reduced the cytotoxic potency of doxorubicin in HUVEC. Lovastatin attenuated the doxorubicin-induced increase in p53 as well as activation of checkpoint kinase (Chk-1) and stress-activated protein kinase/c-Jun-N-terminal kinase (SAPK/JNK). Acquired doxorubicin resistance was independent of alterations in doxorubicin efflux and cell cycle progression. Also, doxorubicin-triggered production of reactive oxygen species (ROS) and formation of oxidative DNA lesions remained unaffected by lovastatin. However, lovastatin impaired DNA strand break formation induced by doxorubicin. Notably, lovastatin also conferred cross-resistance to the cytotoxic and genotoxic effects of etoposide, indicating that lovastatin shields topoisomerase II against poisons. CONCLUSIONS AND IMPLICATIONS: Based on these data, we suggest that lovastatin-mediated resistance to topoisomerase II inhibitors is due to a reduction in DNA damage and, hence, it attenuates stress responses leading to cell death that are triggered by DNA damage. Therefore, lovastatin might be useful clinically for alleviating side-effects of anticancer therapies that include topoisomerase II inhibitors.
Project description:High-risk neuroblastoma remains a therapeutic challenge with a long-term survival rate of less than 40%. Therefore, new agents are urgently needed to overcome chemotherapy resistance so as to improve the treatment outcome of this deadly disease. Histone deacetylase (HDAC) inhibitors (HDACIs) represent a novel class of anticancer drugs. Recent studies demonstrated that HDACIs can down-regulate the CHK1 pathway by which cancer cells can develop resistance to conventional chemotherapy drugs. This prompted our hypothesis that combining HDACIs with DNA damaging chemotherapeutic drugs for treating neuroblastoma would result in enhanced anti-tumor activities of these drugs. Treatment of high-risk neuroblastoma cell lines with a novel pan-HDACI, panobinostat (LBH589), resulted in dose-dependent growth arrest and apoptosis in 4 high-risk neuroblastoma cell lines. Further, the combination of panobinostat with cisplatin, doxorubicin, or etoposide resulted in highly synergistic antitumor interactions in the high-risk neuroblastoma cell lines, independent of the sequence of drug administration. This was accompanied by cooperative induction of apoptosis. Furthermore, panobinostat treatment resulted in substantial down-regulation of CHK1 and its downstream pathway and abrogation of the G2 cell cycle checkpoint. Synergistic antitumor interactions were also observed when the DNA damaging agents were combined with a CHK1-specific inhibitor, LY2603618. Contrary to panobinostat treatment, LY2603618 treatments neither resulted in abrogation of the G2 cell cycle checkpoint nor enhanced cisplatin, doxorubicin, or etoposide-induced apoptosis in the high-risk neuroblastoma cells. Surprisingly, LY2603618 treatments caused substantial down-regulation of total CDK1. Despite this discrepancy between panobinostat and LY2603618, our results indicate that suppression of the CHK1 pathway by panobinostat is at least partially responsible for the synergistic antitumor interactions between panobinostat and the DNA damaging agents in high-risk neuroblastoma cells. The results of this study provide a rationale for clinical evaluation of the combination of panobinostat and cisplatin, doxorubicin, or etoposide for treating children with high-risk neuroblastoma.
Project description:Liposome-based drug delivery systems hold great potential for cancer therapy. The aim of this study was to design a nanodevice for targeted anchoring of liposomes (with and without cholesterol) with encapsulated anticancer drugs and antisense N-myc gene oligonucleotide attached to its surface. To meet this main aim, liposomes with encapsulated doxorubicin, ellipticine and etoposide were prepared. They were further characterized by measuring their fluorescence intensity, whereas the encapsulation efficiency was estimated to be 16%. The hybridization process of individual oligonucleotides forming the nanoconstruct was investigated spectrophotometrically and electrochemically. The concentrations of ellipticine, doxorubicin and etoposide attached to the nanoconstruct in gold nanoparticle-modified liposomes were found to be 14, 5 and 2 µg·mL(-1), respectively. The study succeeded in demonstrating that liposomes are suitable for the transport of anticancer drugs and the antisense oligonucleotide, which can block the expression of the N-myc gene.
Project description:Hydroxyphenylalkanes and diarylheptanoids possess potential therapeutic value in different pathophysiological conditions, such as malignancy. In the current study, naturally isolated hydroxyphenylalkane and diarylheptanoid compounds were investigated for potential chemo-modulatory effects in addition to potential vascular protective roles with doxorubicin. Diarylheptanoids showed stronger antioxidant effects, in comparison to hydroxyphenylalkanes, as demonstrated by DPPH assay and amelioration of CCl₄-induced disturbed intracellular GSH/GSSG balance. Shogaol and 4'-methoxygingerol showed considerable cytotoxic effects against HCT116, HeLa, HepG2 and MCF7 cells, with IC50 values ranging from 3.1 to 19.4 µM. Gingerol significantly enhanced the cytotoxic profile of doxorubicin against HepG₂ and Huh7, cells decreasing its IC50s by 10- and 4-fold, respectively. Cell cycle distribution was studied using DNA cytometry. Doxorubicin alone induced cell accumulation at S-phase and G₂/M-phase, while in combination with gingerol it significantly induced cell cycle arrest at the G₂/M-phase. Additionally, the vascular protective effect of gingerol against doxorubicin (10 µM) was examined on isolated aortic rings. Co-incubation with 6-gingerol (30 µM) completely blocked the exaggerated vasoconstriction and impaired vascular relaxation induced by doxorubicin. In conclusion, despite its relatively weak antioxidant properties, gingerol protected from DOX-induced vascular damage, apparently not through a ROS scavenging mechanism. Besides, gingerol synergized the cytotoxic effects of DOX against liver cancer cells without influencing the cellular pharmacokinetics.
Project description:In search for ecofriendly alternatives to chemical insecticides the present study was conducted to assess the insecticidal potential of an endophytic fungus Schizophyllum commune and its mechanism of toxicity by studying genotoxic and cytotoxic effects as well as repair potential using Spodoptera litura (Fabricius) as a model. Different endophytic fungi were isolated and tested for their insecticidal potential against S. litura. Among the tested endophytic fungi maximum mortality against S. litura was exhibited by S. commune isolated from Aloe vera. Extended development, reduced adult emergence was observed in larvae fed on diet supplemented with fungal extract. In addition to it the fungus also has propensity to increase oxidative stress which leads to significantly higher DNA damage. The significantly lower frequency of living haemocytes and increased frequency of apoptotic and necrotic cells was also observed in larvae treated with fungal extract. The extent of recovery of damage caused by fungus was found to be very low indicating long term effect of treatment. Phytochemical analysis revealed the presence of various phenolics, terpenoids and protein in fungal extract. Biosafety analysis indicated the non toxic nature of extract. This is the first report showing the insecticidal potential of S. commune and the genotoxic and cytotoxic effects associated with it.
Project description:The aim of the study was to evaluate the cytotoxic and genotoxic potential of five commercially available dental composite resins (CRs), investigating the effect of their quantifiable bisphenol-A-glycidyl-methacrylate (Bis-GMA) and/or triethylene glycol dimethacrylate (TEGDMA) release. Experiments were performed using the method of soaking extracts, which were derived from the immersion of the following CRs in the culture medium: Clearfil-Majesty-ES-2, GrandioSO, and Enamel-plus-HRi (Bis-GMA-based); Enamel-BioFunction and VenusDiamond (Bis-GMA-free). Human Gingival Fibroblasts (hGDFs) were employed as the cellular model to mimic in vitro the oral cavity milieu, where CRs simultaneously release various components. Cell metabolic activity, oxidative stress, and genotoxicity were used as cellular outcomes. Results showed that only VenusDiamond and Enamel-plus-HRi significantly affected the hGDF cell metabolic activity. In accordance with this, although no CR-derived extract induced a significantly detectable oxidative stress, only VenusDiamond and Enamel-plus-HRi induced significant genotoxicity. Our findings showed, for the CRs employed, a cytotoxic and genotoxic potential that did not seem to depend only on the actual Bis-GMA or TEGDMA content. Enamel-BioFunction appeared optimal in terms of cytotoxicity, and similar findings were observed for Clearfil-Majesty-ES-2 despite their different Bis-GMA/TEGDMA release patterns. This suggested that simply excluding one specific monomer from the CR formulation might not steadily turn out as a successful approach for improving their biocompatibility.
Project description:BackgroundPlague is an ectoparasite-borne deadly infection caused by Yersinia pestis, a bacterium classified among the group A bioterrorism agents. Thousands of deaths are reported every year in some African countries. Tetracyclines and cotrimoxazole are used in the secondary prophylaxis of plague in the case of potential exposure to Y. pestis, but cotrimoxazole-resistant isolates have been reported. There is a need for additional prophylactic measures. We aimed to study the effectiveness of lovastatin, a cholesterol-lowering drug known to alleviate the symptoms of sepsis, for plague prophylaxis in an experimental model.MethodologyLovastatin dissolved in Endolipide was intraperitoneally administered to mice (20 mg/kg) every day for 6 days prior to a Y. pestis Orientalis biotype challenge. Non-challenged, lovastatin-treated and challenged, untreated mice were also used as control groups in the study. Body weight, physical behavior and death were recorded both prior to infection and for 10 days post-infection. Samples of the blood, lungs and spleen were collected from dead mice for direct microbiological examination, histopathology and culture. The potential antibiotic effect of lovastatin was tested on blood agar plates.Conclusions/significanceLovastatin had no in-vitro antibiotic effect against Y. pestis. The difference in the mortality between control mice (11/15; 73.5%) and lovastatin-treated mice (3/15; 20%) was significant (P<0.004; Mantel-Haenszel test). Dead mice exhibited Y. pestis septicemia and inflammatory destruction of lung and spleen tissues not seen in lovastatin-treated surviving mice. These data suggest that lovastatin may help prevent the deadly effects of plague. Field observations are warranted to assess the role of lovastatin in the prophylaxis of human plague.
Project description:PurposeIn this study, two main research objectives were examined: (1) the cytotoxic and anticancer activities of the aqueous methanol extract from Acacia nilotica flowers on three human cancer cells, namely lung A549, breast MCF-7, and leukemia THP-1 cells, and (2) the genotoxic effects of A. nilotica extract and its influence on DNA damage induced by N-methyl-N-nitrosourea (MNU) in mice.MethodsMice were orally treated with A. nilotica extract (200, 500, and 800 mg/kg for 4 days) with or without MNU (80 mg/kg intraperitoneally for 24 h).ResultsIn vitro experiments showed that A549 cells were the most sensitive to A. nilotica extract among the tested cell lines. A. nilotica extract inhibited A549 cell proliferation by blocking the cell cycle at the G2/M phase and accumulating apoptotic cells in the sub-G0/G1 phase in A549 cells. In vivo experiments showed that MNU induced positive and negative genotoxicity in bone marrow cells and spermatocytes, respectively. Negative genotoxicity was observed in A. nilotica extract-treated groups only. However, A. nilotica extract (800 mg/kg) remarkably increased comet tail formation in bone marrow cells. Unexpectedly, the absence of antigenotoxicity was observed in three cotreated groups with A. nilotica extract and MNU compared with the MNU-treated group. Astonishingly, cotreatment with MNU and A. nilotica extract at a dose above 200 mg/kg remarkably increased micronucleus and comet tail formation in bone marrow cells compared with the MNU-treated group.ConclusionsA. nilotica extract possessed anticancer activity with relative genotoxic effects at high doses.
Project description:The development of multidrug resistance (MDR) in cancer patients, which is often associated with the overexpression of ABCB1 (MDR1, P-glycoprotein) in cancer cells, remains a significant problem in cancer chemotherapy. ABCB1 is one of the major adenosine triphosphate (ATP)-binding cassette (ABC) transporters that can actively efflux a range of anticancer drugs out of cancer cells, causing MDR. Given the lack of Food and Drug Administration (FDA)-approved treatment for multidrug-resistant cancers, we explored the prospect of repurposing erdafitinib, the first fibroblast growth factor receptor (FGFR) kinase inhibitor approved by the FDA, to reverse MDR mediated by ABCB1. We discovered that by reducing the function of ABCB1, erdafitinib significantly resensitized ABCB1-overexpressing multidrug-resistant cancer cells to therapeutic drugs at sub-toxic concentrations. Results of erdafitinib-stimulated ABCB1 ATPase activity and in silico docking analysis of erdafitinib binding to the substrate-binding pocket of ABCB1 further support the interaction between erdafitinib and ABCB1. Moreover, our data suggest that ABCB1 is not a major mechanism of resistance to erdafitinib in cancer cells. In conclusion, we revealed an additional action of erdafitinib as a potential treatment option for multidrug-resistant cancers, which should be evaluated in future drug combination trials.
Project description:Melanoma is the most aggressive form of skin cancer and until recently, it was extremely resistant to radio-, immuno-, and chemotherapy. Despite the latest success of BRAF V600E-targeted therapies, responses are typically short lived and relapse is all but certain. Furthermore, a percentage (40%) of melanoma cells is BRAF wild type. Emerging evidence suggests a role for normal host cells in the occurrence of drug resistance. In the current study, we compared a variety of cell culture models with an organotypic incomplete skin culture model (the "dermal equivalent") to investigate the role of the tissue microenvironment in the response of melanoma cells to the chemotherapeutic agent doxorubicin (Dox). In the dermal equivalent model, consisting of fibroblasts embedded in type I collagen matrix, melanoma cells showed a decreased cytotoxic response when compared with less complex culture conditions, such as seeding on plastic cell culture plate (as monolayers cultures) or on collagen gel. We further investigated the role of the microenvironment in p53 induction and caspase 3 and 9 cleavage. Melanoma cell lines cultured on dermal equivalent showed decreased expression of p53 after Dox treatment, and this outcome was accompanied by induction of interleukin IL-6, IL-8, and matrix metalloproteinases 2 and 9. Here, we show that the growth of melanoma cells in the dermal equivalent model inflects drug responses by recapitulating important pro-survival features of the tumor microenvironment. These studies indicate that the presence of stroma enhances the drug resistance of melanoma in vitro, more closely mirroring the in vivo phenotype. Our data, thus, demonstrate the utility of organotypic cell culture models in providing essential context-dependent information critical for the development of new therapeutic strategies for melanoma. We believe that the organotypic model represents an improved screening platform to investigate novel anti-cancer agents, as it provides important insights into tumor-stromal interactions, thus assisting in the elucidation of chemoresistance mechanisms.
Project description:Bisacylphosphane oxides (BAPOs) are established as photoinitiators for industrial applications. Light irradiation leads to their photolysis, producing radicals. Radical species induce oxidative stress in cells and may cause cell death. Hence, BAPOs may be suitable as photolatent cytotoxic agents, but such applications have not been investigated yet. Herein, we describe for the first time a potential use of BAPOs as drugs for photolatent therapy. We show that treatment of the breast cancer cell lines MCF-7 and MDA-MB-231 and of breast epithelial cells MCF-10A with BAPOs and UV irradiation induces apoptosis. Cells just subjected to BAPOs or UV irradiation alone are not affected. The induction of apoptosis depend on the BAPO and the irradiation dose. We proved that radicals are the active species since cells are rescued by an antioxidant. Finally, an optimized BAPO-derivative was designed which enters the cells more efficiently and thus leads to stronger effects at lower doses.