Potential use of the alkaline comet assay as a predictor of bladder tumour response to radiation.
Ontology highlight
ABSTRACT: Bladder tumours show a variable response to radiotherapy with only about 50% showing good local control; currently there is no test to predict outcome prior to treatment. We have used five bladder tumour cell lines (T24, UM-UC-3, TCC-SUP, RT112, HT1376) to investigate the potential of the alkaline comet assay (ACA) to predict radiosensitivity. Radiation-induced DNA damage and repair were compared to clonogenic survival. When the five cell lines were irradiated and initial DNA damage was plotted against cell survival, at all doses (0-6 Gy), a significant correlation was found (r2=0.9514). Following 4 Gy X-irradiation, all cell lines, except T24, showed a correlation between SF2 vs half-time for repair and SF2 vs residual damage at 5, 10, 20 and 30 min. The T24 cell line showed radioresistance at low doses (0-2 Gy) and radiosensitivity at higher doses (4-6 Gy) using both cell survival and ACA end points, explaining the lack of correlation observed for this cell line. These data indicate that initial DNA damage and residual damage can be used to predict for radiosensitivity. Our data suggest that predictive tests of radiosensitivity, appropriate to the clinical situation, may require the use of test doses in the clinical range.
Project description:Due to their unique chemical and physical properties, nanobiomaterials (NBMs) are extensively studied for applications in medicine and drug delivery. Despite these exciting properties, their small sizes also make them susceptible to toxicity. Whilst nanomaterial immunotoxicity and cytotoxicity are studied in great depth, there is still limited data on their potential genotoxicity or ability to cause DNA damage. In the past years, new medical device regulations, which came into place in 2020, were developed, which require the assessment of long-term NBM exposure; therefore, in recent years, increased attention is being paid to genotoxicity screening of these materials. In this article, and through an interlaboratory comparison (ILC) study conducted within the Horizon 2020 REFINE project, we assess five different NBM formulations, each with different uses, namely, a bio-persistent gold nanoparticle (AuNP), an IR-780 dye-loaded liposome which is used in deep tissue imaging (LipImage™815), an unloaded PACA polymeric nanoparticle used as a drug delivery system (PACA), and two loaded PACA NBMs, i.e. the cabazitaxel drug-loaded PACA (CBZ-PACA) and the NR668 dye-loaded PACA (NR668 PACA) for their potential to cause DNA strand breaks using the alkaline comet assay and discuss the current state of genotoxicity testing for nanomaterials. We have found through our interlaboratory comparison that the alkaline comet assay can be suitably applied to the pre-clinical assessment of NBMs, as a reproducible and repeatable methodology for assessing NBM-induced DNA damage. Workflow for assessing the applicability of the alkaline comet assay to determine nanobiomaterial (NBM)-induced DNA strand breaks, through an interlaboratory comparison study (ILC).
Project description:Increased engineered nanomaterial (ENM) production and incorporation in consumer and biomedical products has raised concerns about the potential adverse effects. The DNA damaging capacity is of particular importance since damaged genetic material can lead to carcinogenesis. Consequently, reliable and robust in vitro studies assessing ENM genotoxicity are of great value. We utilized two complementary assays based on different measurement principles: (1) comet assay and (2) FADU (fluorimetric detection of alkaline DNA unwinding) assay. Assessing cell viability ruled out false-positive results due to DNA fragmentation during cell death. Potential structure-activity relationships of 10 ENMs were investigated: three silica nanoparticles (SiO2-NP) with varying degrees of porosity, titanium dioxide (TiO2-NP), polystyrene (PS-NP), zinc oxide (ZnO-NP), gold (Au-NP), graphene oxide (GO) and two multi-walled carbon nanotubes (MWNT). SiO2-NPs, TiO2-NP and GO were neither cytotoxic nor genotoxic to Jurkat E6-I cells. Quantitative interference corrections derived from GO results can make the FADU assay a promising screening tool for a variety of ENMs. MWNT merely induced cytotoxicity, while dose- and time-dependent cytotoxicity of PS-NP was accompanied by DNA fragmentation. Hence, PS-NP served to benchmark threshold levels of cytotoxicity at which DNA fragmentation was expected. Considering all controls revealed the true genotoxicity for Au-NP and ZnO-NP at early time points.
Project description:The systematic study of genotoxicity in plants induced by contaminants and other stress agents has been hindered to date by the lack of reliable and robust biomarkers. The comet assay is a versatile and sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Due to its simplicity and sensitivity, and the small number of cells required to obtain robust results, the use of plant comet assay has drastically increased in the last decade. For years its use was restricted to a few model species, e.g., Allium cepa, Nicotiana tabacum, Vicia faba, or Arabidopsis thaliana but this number largely increased in the last years. Plant comet assay has been used to study the genotoxic impact of radiation, chemicals including pesticides, phytocompounds, heavy metals, nanoparticles or contaminated complex matrices. Here we will review the most recent data on the use of this technique as a standard approach for studying the genotoxic effects of different stress conditions on plants. Also, we will discuss the integration of information provided by the comet assay with other DNA-damage indicators, and with cellular responses including oxidative stress, cell division or cell death. Finally, we will focus on putative relations between transcripts related with DNA damage pathways, DNA replication and repair, oxidative stress and cell cycle progression that have been identified in plant cells with comet assays demonstrating DNA damage.
Project description:The alkaline single cell gel electrophoresis (comet) assay can be combined with fluorescent in situ hybridisation (FISH) methodology in order to investigate the localisation of specific gene domains within an individual cell. The number and position of the fluorescent signal(s) provides information about the relative damage and subsequent repair that is occurring in the targeted gene domain(s). In this study, we have optimised the comet-FISH assay to detect and compare DNA damage and repair in the p53 and hTERT gene regions of bladder cancer cell-lines RT4 and RT112, normal fibroblasts and Cockayne Syndrome (CS) fibroblasts following γ-radiation. Cells were exposed to 5Gy γ-radiation and repair followed for up to 60 minutes. At each repair time-point, the number and location of p53 and hTERT hybridisation spots was recorded in addition to standard comet measurements. In bladder cancer cell-lines and normal fibroblasts, the p53 gene region was found to be rapidly repaired relative to the hTERT gene region and the overall genome, a phenomenon that appeared to be independent of hTERT transcriptional activity. However, in the CS fibroblasts, which are defective in transcription coupled repair (TCR), this rapid repair of the p53 gene region was not observed when compared to both the hTERT gene region and the overall genome, proving the assay can detect variations in DNA repair in the same gene. In conclusion, we propose that the comet-FISH assay is a sensitive and rapid method for detecting differences in DNA damage and repair between different gene regions in individual cells in response to radiation. We suggest this increases its potential for measuring radiosensitivity in cells and may therefore have value in a clinical setting.
Project description:ObjectiveSeveral studies investigated the link between agricultural occupational exposures and DNA damage, in an attempt to bring elements of biological plausibility to the increased cancer risk associated with them. However, only a few of these studies focused on females.MethodsThe comet assay was performed on PBMC (Peripheral Blood Mononuclear Cells) samples from 245 females working in open field farming and cattle raising, located in the Normandy area of France. Individual questionnaires on tasks performed were administered at the time of sampling to directly assess exposures. Environmental exposures were issued from a questionnaire assessing the farm productions. Linear regression analyses were done using the DNA damage scores.ResultsRegarding direct exposures, several tasks associated with exposure to potentially harmful chemicals were not associated with DNA damage, but a longer duration of use of herbicide on meadows (p = 0.05) or of cleaning and upkeep of agricultural equipment (p = 0.06) revealed higher DNA damage levels, although the number of exposed women was low. Several indirect and/or environmental exposures were associated with DNA damage in multivariate analyses: a larger surface of meadows (p = 0.006) or the presence of poultry (p = 0.03) was associated with less DNA damage, while the presence of swine (p = 0.01) was associated with higher DNA damage. Smokers and former smokers had less DNA damage than non-smokers (p = 0.0008 and p = 0.03).ConclusionsWe report modified levels of DNA damage for those environmentally exposed to meadows, poultry and pig farming, underlining the need for a better knowledge of the potential health risks experienced by females in this setting.
Project description:The comet assay is a widely used test for the detection of DNA damage and repair activity. However, there are interlaboratory differences in reported levels of baseline and induced damage in the same experimental systems. These differences may be attributed to protocol differences, although it is difficult to identify the relevant conditions because detailed comet assay procedures are not always published. Here, we present a Consensus Statement for the Minimum Information for Reporting Comet Assay (MIRCA) providing recommendations for describing comet assay conditions and results. These recommendations differentiate between 'desirable' and 'essential' information: 'essential' information refers to the precise details that are necessary to assess the quality of the experimental work, whereas 'desirable' information relates to technical issues that might be encountered when repeating the experiments. Adherence to MIRCA recommendations should ensure that comet assay results can be easily interpreted and independently verified by other researchers.
Project description:Transcription-coupled repair (TCR) is a pathway dedicated to the removal of damage from the template strands of actively transcribed genes. Although the detailed mechanism of TCR is not yet understood, it is believed to be triggered when a translocating RNA polymerase is arrested at a lesion or unusual structure in the DNA. Conventional assays for TCR require high doses of DNA damage for the statistical analysis of repair in the individual strands of DNA sequences ranging in size from a few hundred bases to 30kb. The single cell gel electrophoresis (Comet) assay allows detection of single- or double-strand breaks at a 10-100-fold higher level of resolution. Fluorescence in situ hybridization (FISH) combined with the Comet assay (Comet-FISH) affords a heightened level of sensitivity for the assessment of repair in defined DNA sequences of cells treated with physiologically relevant doses of genotoxins. This approach also reveals localized susceptibility to chromosomal breakage in cells from individuals with hypersensitivity to radiation or chemotherapy. Several groups have reported preferential repair in transcriptionally active genes or chromosomal domains using Comet-FISH. The prevailing interpretation of the behavior of DNA in the Comet assay assumes that the DNA is arranged in loops and matrix-attachment sites; that supercoiled, undamaged loops are contained within the nuclear matrix and appear in Comet "heads", and that Comet "tails" consist of relaxed DNA loops containing one or more breaks. According to this model, localization of FISH probes in Comet heads signifies that loops containing the targeted sequences are free of damage. This implies that preferential repair as detected by Comet-FISH might encompass large chromosomal domains containing both transcribed and non-transcribed sequences. We review the existing evidence and discuss the implications in relation to current models for the molecular mechanism of TCR.
Project description:Nitric oxide (NO) is an important product of eosinophilic metabolism, and its increase is associated with bronchial remodeling and airway hyperresponsiveness. Fractional exhaled NO (FENO) in the expired air of patients with suspected or diagnosed asthma has been used as a marker for eosinophilic inflammation. This cohort study included asthmatic patients classified under steps 3, 4, or 5 of the global strategy for asthma management and prevention. In the morning of the same day, all patients underwent blood collection for eosinophil counts, followed by FENO measurement and spirometry. We considered 2 groups based on the bronchodilation (BD) response on spirometry (>10% of FVC or FEV1): positive (BD+) and negative (BD-). Differences between the 2 groups were analyzed for demographic features, FENO values, and predictive correlations between FENO and BD. Both groups of patients showed an increase in the eosinophil count (BD+, P = .03; BD-, P = .04) and FENO values (P = .015 for both) with an increase in the asthma severity from step 3 to step 5 of the global strategy for asthma management and prevention. The correlations of FENO and eosinophils as well as FENO values and BD + were 0.127 (95% confidence interval,-0.269 to -0.486) and 0.696 (95% confidence interval, 0.246-0.899; P = .007), respectively. Measuring FENO levels may be useful for identifying patients with BD+.
Project description:Reduced expression of nucleolar genes induces stress and DNA damage. Here, we present a protocol to analyze DNA fragmentation at the single-cell level in Drosophila imaginal discs using an optimized alkaline comet assay. We describe steps for larvae development, tissue disaggregation, and single-cell dissociation. We then detail procedures for cell lysis, electrophoresis, and DNA visualization. This approach provides insights into the molecular consequences of nucleolar stress induction and its role in the DNA damage response pathways in vivo.
Project description:Many subjects perceive venous blood collection as too invasive, and thus moving to better-accepted procedures for leukocytes collection might be crucial in human biomonitoring studies (e.g., biomonitoring of occupational or residential exposure to genotoxins) management. In this context, primary DNA damage was assessed in buccal lymphocytes (BLs), fresh whole venous, and capillary blood leukocytes, and compared with that in peripheral blood lymphocytes (PBLs)-the most frequently used cells-in 15 young subjects. Mouthwashes were collected after the volunteers rinsed their mouths with normal saline, and BLs were isolated by density gradient centrifugation. Blood samples were collected by venipuncture or by lancet. Anthropometric and lifestyle information was obtained by the administration of a structured questionnaire. As shown in the Bland-Altman plots, the level of agreement between BLs and PBLs lied within the accepted range, we thus enrolled a wider population (n = 54) to assess baseline DNA damage in BLs. In these cells, mean values of tail length (µm), tail intensity (%), and tail moment were 25.7 ± 0.9, 6.7 ± 0.4 and 1.0 ± 0.1, respectively. No significant association was observed between sex and smoking habit with any of the DNA damage parameters. Conversely, underweight subjects displayed significantly higher genomic instability compared with normal weight group (p < 0.05). In conclusion, we successfully managed to set up and update a non-invasive and well-accepted procedure for the isolation of BLs from saliva that could be useful in upcoming biomonitoring studies.