The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms.
Ontology highlight
ABSTRACT: Amoebae are generally assumed to be asexual. We argue that this view is a relict of early classification schemes that lumped all amoebae together inside the 'lower' protozoa, separated from the 'higher' plants, animals and fungi. This artificial classification allowed microbial eukaryotes, including amoebae, to be dismissed as primitive, and implied that the biological rules and theories developed for macro-organisms need not apply to microbes. Eukaryotic diversity is made up of 70+ lineages, most of which are microbial. Plants, animals and fungi are nested among these microbial lineages. Thus, theories on the prevalence and maintenance of sex developed for macro-organisms should in fact apply to microbial eukaryotes, though the theories may need to be refined and generalized (e.g. to account for the variation in sexual strategies and prevalence of facultative sex in natural populations of many microbial eukaryotes). We use a revised phylogenetic framework to assess evidence for sex in several amoeboid lineages that are traditionally considered asexual, and we interpret this evidence in light of theories on the evolution of sex developed for macro-organisms. We emphasize that the limited data available for many lineages coupled with natural variation in microbial life cycles overestimate the extent of asexuality. Mapping sexuality onto the eukaryotic tree of life demonstrates that the majority of amoeboid lineages are, contrary to popular belief, anciently sexual, and that most asexual groups have probably arisen recently and independently. Additionally, several unusual genomic traits are prevalent in amoeboid lineages, including cyclic polyploidy, which may serve as alternative mechanisms to minimize the deleterious effects of asexuality.
Project description:Here we reassess available evidence for the long-held misconception of amoebae possessing exceptionally large genomes. Traditionally, estimates relied on inaccurate methods like DNA weight measurements, leading to inflated sizes. These methods failed to account for contaminating DNA from prey, endosymbionts, and intrinsic genomic features like ribosomal operon amplification. Modern sequencing techniques unveil a different picture. Fully sequenced amoebozoa genomes range from 14.4 to 52.37 mega basepairs, well within the typical single-celled eukaryote expectation. While the whole genome of the historically relevant Amoeba proteus has not yet been fully sequenced, we provide here a statistical analysis using protein-coding genes from transcriptomic data, suggesting that the genome size is consistent with this range, far smaller than previously claimed. The misconception likely originated in the early 21st century and perpetuated through popular science materials. We conclude that there is no longer reason to reaffirm that amoeba genomes are giant.
Project description:Dollo's law of irreversibility states that once a complex structure is lost, it cannot be regained in the same form. Several putative exceptions to Dollo's law have been identified using phylogenetic comparative methods, but the anatomy and development of these traits are often poorly understood. Gastrotheca guentheri is renowned as the only frog with teeth on the lower jaw. Mandibular teeth were lost in the ancestor of frogs more than 200 million years ago and subsequently regained in G. guentheri. Little is known about the teeth in this species despite being a frequent example of trait "re-evolution," leaving open the possibility that it may have mandibular pseudoteeth. We assessed the dental anatomy of G. guentheri using micro-computed tomography and histology and confirmed the longstanding assumption that true mandibular teeth are present. Remarkably, the mandibular teeth of G. guentheri are nearly identical in gross morphology and development to upper jaw teeth in closely related species. The developmental genetics of tooth formation are unknown in this possibly extinct species. Our results suggest that an ancestral odontogenic pathway has been conserved but suppressed in the lower jaw since the origin of frogs, providing a possible mechanism underlying the re-evolution of lost mandibular teeth.
Project description:Associative memory is the main type of learning by which complex organisms endowed with evolved nervous systems respond efficiently to certain environmental stimuli. It has been found in different multicellular species, from cephalopods to humans, but never in individual cells. Here we describe a motility pattern consistent with associative conditioned behavior in the microorganism Amoeba proteus. We use a controlled direct-current electric field as the conditioned stimulus, and a specific chemotactic peptide as the unconditioned stimulus. The amoebae are capable of linking two independent past events, generating persistent locomotion movements that can prevail for 44 min on average. We confirm a similar behavior in a related species, Metamoeba leningradensis. Thus, our results indicate that unicellular organisms can modify their behavior during migration by associative conditioning.
Project description:SummaryIn the past decade there has been a rapid increase in gender diversity, particularly in children and young people, with referrals to specialist gender clinics rising. In this article, the evolving terminology around transgender health is considered and the role of psychiatry is explored now that this condition is no longer classified as a mental illness. The concept of conversion therapy with reference to alternative gender identities is examined critically and with reference to psychiatry's historical relationship with conversion therapy for homosexuality. The authors consider the uncertainties that clinicians face when dealing with something that is no longer a disorder nor a mental condition and yet for which medical interventions are frequently sought and in which mental health comorbidities are common.
Project description:Causal processes can give rise to distinctive distributions in the linguistic variables that they affect. Consequently, a secure understanding of a variable's distribution can hold a key to understanding the forces that have causally shaped it. A storied distribution in linguistics has been Zipf's law, a kind of power law. In the wake of a major debate in the sciences around power-law hypotheses and the unreliability of earlier methods of evaluating them, here we re-evaluate the distributions claimed to characterize phoneme frequencies. We infer the fit of power laws and three alternative distributions to 166 Australian languages, using a maximum likelihood framework. We find evidence supporting earlier results, but also nuancing them and increasing our understanding of them. Most notably, phonemic inventories appear to have a Zipfian-like frequency structure among their most-frequent members (though perhaps also a lognormal structure) but a geometric (or exponential) structure among the least-frequent. We compare these new insights the kinds of causal processes that affect the evolution of phonemic inventories over time, and identify a potential account for why, despite there being an important role for phonetic substance in phonemic change, we could still expect inventories with highly diverse phonetic content to share similar distributions of phoneme frequencies. We conclude with priorities for future work in this promising program of research.
Project description:The regulation of reproductive division of labour is a key component in the evolution of social insects. Chemical signals are important mechanisms to regulate worker reproduction, either as queen-produced pheromones that coercively inhibit worker reproduction or as queen signals that honestly advertise her fecundity. A recent study suggested that a conserved class of hydrocarbons serve as queen pheromones across three independent origins of eusociality. In bumblebees (Bombus terrestris), pentacosane (C25) was suggested to serve as a queen pheromone. Here, we repeat these studies using a different species of bumblebee (Bombus impatiens) with a more controlled experimental design. Instead of dequeened colonies, we used same-aged, three-worker queenless groups comprising either experienced or naive workers (with/without adult exposure to queen pheromone). We quantified three hydrocarbons (C23, C25 and C27) on the cuticular surfaces of females and tested their effects on the two worker types. Our results indicate differences in responses of naive and experienced workers, genetic effects on worker reproduction, and general effects of hydrocarbons and duration of egg laying on ovary resorption rates. However, we found no evidence to support the theory that a conserved class of hydrocarbons serve as queen pheromones or queen signals in Bombus impatiens.