Arbovirus high fidelity variant loses fitness in mosquitoes and mice.
Ontology highlight
ABSTRACT: The error rate of RNA-dependent RNA polymerases (RdRp) affects the mutation frequency in a population of viral RNAs. Using chikungunya virus (CHIKV), we describe a unique arbovirus fidelity variant with a single C483Y amino acid change in the nsP4 RdRp that increases replication fidelity and generates populations with reduced genetic diversity. In mosquitoes, high fidelity CHIKV presents lower infection and dissemination titers than wild type. In newborn mice, high fidelity CHIKV produces truncated viremias and lower organ titers. These results indicate that increased replication fidelity and reduced genetic diversity negatively impact arbovirus fitness in invertebrate and vertebrate hosts.
Project description:Although several high-fidelity SpCas9 variants have been reported, it has been observed that this increased specificity is associated with reduced on-target activity, limiting the applications of the high-fidelity variants when efficient genome editing is required. Here, we developed an improved version of Sniper-Cas9, Sniper2L, which represents an exception to this trade-off trend as it showed higher specificity with retained high activity. We evaluated Sniper2L activities at a large number of target sequences and developed DeepSniper, a deep learning model that can predict the activity of Sniper2L. We also confirmed that Sniper2L can induce highly efficient and specific editing at a large number of target sequences when it is delivered as a ribonucleoprotein complex. Mechanically, the high specificity of Sniper2L originates from its superior ability to avoid unwinding a target DNA containing even a single mismatch. We envision that Sniper2L will be useful when efficient and specific genome editing is required.
Project description:The RNA-guided endonucleases of the CRISPR-Cas9 system, including the most widely used Cas9 from Streptococcus pyogenes (SpCas9), are becoming a robust genome editing tool in model organisms and hold immense promise for therapeutic applications. Many strategies have been employed to overcome the limitations caused by SpCas9's off-target effects and its stringent requirement for the protospacer adjacent motif (PAM) sequence. However, the structural mechanisms underlying these strategies remain undefined. Here, we present crystal structure of a SpCas9 variant, xCas9 3.7 that has broad PAM compatibility and high DNA targeting specificity, in complex with a single-guide RNA and its double-stranded DNA targets. Structural comparison revealed that salt bridge-stabilized R1335 is critical for the stringent selection of PAM sequence by SpCas9. Unrestricted rotamerization of this residue by the E1219V mutation in xCas9 3.7 lessens the stringency for PAM recognition and allows SpCas9 to recognize multiple PAM sequences as further supported by biochemical data. Compared to those in wild-type (WT) SpCas9, REC2 and REC3 domains in xCas9 3.7 undergo striking conformational changes, leading to reduced contact with DNA substrate. SpCas9 mutants engineered to display less interaction with DNA and have conformationally more flexible REC2 and REC3 domains display enhanced specificity for DNA substrates in both biochemical and cellular assays. Taken together, our findings reveal the structural mechanisms underlying the broadened PAM compatibility and high DNA fidelity of xCas9 3.7, which can assist rational engineering of more efficient SpCas9 variants and probably other Cas9 orthologs.
Project description:Electroporation of the Cas9 ribonucleoprotein (RNP) complex offers the advantage of preventing off-target cleavages and potential immune responses produced by long-term expression of the nuclease. Nevertheless, the majority of engineered high-fidelity Streptococcus pyogenes Cas9 (SpCas9) variants are less active than the wild-type enzyme and are not compatible with RNP delivery. Building on our previous studies on evoCas9, we developed a high-fidelity SpCas9 variant suitable for RNP delivery. The editing efficacy and precision of the recombinant high-fidelity Cas9 (rCas9HF), characterized by the K526D substitution, was compared with the R691A mutant (HiFi Cas9), which is currently the only available high-fidelity Cas9 that can be used as an RNP. The comparative analysis was extended to gene substitution experiments where the two high fidelities were used in combination with a DNA donor template, generating different ratios of non-homologous end joining (NHEJ) versus homology-directed repair (HDR) for precise editing. The analyses revealed a heterogeneous efficacy and precision indicating different targeting capabilities between the two variants throughout the genome. The development of rCas9HF, characterized by an editing profile diverse from the currently used HiFi Cas9 in RNP electroporation, increases the genome editing solutions for the highest precision and efficient applications.
Project description:Laboratory tests for the accurate and rapid identification of SARS-CoV-2 variants can potentially guide the treatment of COVID-19 patients and inform infection control and public health surveillance efforts. Here, we present the development and validation of a rapid COVID-19 variant DETECTR assay incorporating loop-mediated isothermal amplification (LAMP) followed by CRISPR-Cas12 based identification of single nucleotide polymorphism (SNP) mutations in the SARS-CoV-2 spike (S) gene. This assay targets the L452R, E484K/Q/A, and N501Y mutations, at least one of which is found in nearly all major variants. In a comparison of three different Cas12 enzymes, only the newly identified enzyme CasDx1 was able to accurately identify all targeted SNP mutations. An analysis pipeline for CRISPR-based SNP identification from 261 clinical samples yielded a SNP concordance of 97.3% and agreement of 98.9% (258 of 261) for SARS-CoV-2 lineage classification, using SARS-CoV-2 whole-genome sequencing and/or real-time RT-PCR as test comparators. We also showed that detection of the single E484A mutation was necessary and sufficient to accurately identify Omicron from other major circulating variants in patient samples. These findings demonstrate the utility of CRISPR-based DETECTR as a faster and simpler diagnostic method compared with sequencing for SARS-CoV-2 variant identification in clinical and public health laboratories.
Project description:Channelrhodopsins are a promising toolset for noninvasive optical manipulation of genetically identifiable neuron populations. Existing channelrhodopsins have generally suffered from a trade-off between two desired properties: fast channel kinetics and large photocurrent. Such a trade-off hinders spatiotemporally precise optogenetic activation during both one-photon and two-photon photostimulation. Furthermore, the simultaneous use of spectrally separated genetically encoded indicators and channelrhodopsins has generally suffered from non-negligible crosstalk in photocurrent or fluorescence. These limitations have hindered crosstalk-free dual-channel experiments needed to establish relationships between multiple neural populations. Recent large-scale transcriptome sequencing revealed one potent optogenetic actuator, the channelrhodopsin from species Chloromonas oogama (CoChR), which possessed high cyan light-driven photocurrent but slow channel kinetics. We rationally designed and engineered a kinetic-optimized CoChR variant that was faster than native CoChR while maintaining large photocurrent amplitude. When expressed in cultured hippocampal pyramidal neurons, our CoChR variant improved high-frequency spiking fidelity under one-photon illumination. Our CoChR variant's blue-shifted excitation spectrum enabled simultaneous cyan photostimulation and red calcium imaging with negligible photocurrent crosstalk.
Project description:BackgroundRecent advances in long-read sequencing technologies have enabled accurate identification of all genetic variants in individuals or cells; this procedure is known as variant calling. However, benchmarking studies on variant calling using different long-read sequencing technologies are still lacking.ResultsWe used two Caenorhabditis elegans strains to measure several variant calling metrics. These two strains shared true-positive genetic variants that were introduced during strain generation. In addition, both strains contained common and distinguishable variants induced by DNA damage, possibly leading to false-positive estimation. We obtained accurate and noisy long reads from both strains using high-fidelity (HiFi) and continuous long-read (CLR) sequencing platforms, and compared the variant calling performance of the two platforms. HiFi identified a 1.65-fold higher number of true-positive variants on average, with 60% fewer false-positive variants, than CLR did. We also compared read-based and assembly-based variant calling methods in combination with subsampling of various sequencing depths and demonstrated that variant calling after genome assembly was particularly effective for detection of large insertions, even with 10 × sequencing depth of accurate long-read sequencing data.ConclusionsBy directly comparing the two long-read sequencing technologies, we demonstrated that variant calling after genome assembly with 10 × or more depth of accurate long-read sequencing data allowed reliable detection of true-positive variants. Considering the high cost of HiFi sequencing, we herein propose appropriate methodologies for performing cost-effective and high-quality variant calling: 10 × assembly-based variant calling. The results of the present study may facilitate the development of methods for identifying all genetic variants at the population level.
Project description:Manipulation of natural mosquito populations using the endosymbiotic bacteria Wolbachia is being investigated as a novel strategy to reduce the burden of mosquito-borne viruses. To evaluate the efficacy of these interventions, it will be critical to determine Wolbachia infection frequencies in Aedes aegypti mosquito populations. However, current diagnostic tools are not well-suited to fit this need. Morphological methods cannot identify Wolbachia, immunoassays often suffer from low sensitivity and poor throughput, while PCR and spectroscopy require complex instruments and technical expertise, which restrict their use to centralized laboratories. To address this unmet need, we have used loop-mediated isothermal amplification (LAMP) and oligonucleotide strand displacement (OSD) probes to create a one-pot sample-to-answer nucleic acid diagnostic platform for vector and symbiont surveillance. LAMP-OSD assays can directly amplify target nucleic acids from macerated mosquitoes without requiring nucleic acid purification and yield specific single endpoint yes/no fluorescence signals that are observable to eye or by cellphone camera. We demonstrate cellphone-imaged LAMP-OSD tests for two targets, the Aedes aegypti cytochrome oxidase I (coi) gene and the Wolbachia surface protein (wsp) gene, and show a limit of detection of 4 and 40 target DNA copies, respectively. In a blinded test of 90 field-caught mosquitoes, the coi LAMP-OSD assay demonstrated 98% specificity and 97% sensitivity in identifying Ae. aegypti mosquitoes even after 3 weeks of storage without desiccant at 37°C. Similarly, the wsp LAMP-OSD assay readily identified the wAlbB Wolbachia strain in field-collected Aedes albopictus mosquitoes without generating any false positive signals. Modest technology requirements, minimal execution steps, simple binary readout, and robust accuracy make the LAMP-OSD-to-cellphone assay platform well suited for field vector surveillance in austere or resource-limited conditions.
Project description:Transgenic mosquitoes often display fitness costs compared to their wild-type counterparts. In this regard, fitness cost studies involve collecting life parameter data from genetically modified mosquitoes and comparing them to mosquitoes lacking transgenes from the same genetic background. This manuscript illustrates how to measure common life history traits in the mosquito Aedes aegypti, including fecundity, wing size and shape, fertility, sex ratio, viability, development times, male contribution, and adult longevity. These parameters were chosen because they reflect reproductive success, are simple to measure, and are commonly reported in the literature. The representative results quantify fitness costs associated with either a gene knock-out or a single insertion of a gene drive element. Standardizing how life parameter data are collected is important because such data may be used to compare the health of transgenic mosquitoes generated across studies or to model the transgene fixation rate in a simulated wild-type mosquito population. Although this protocol is specific for transgenic Aedes aegypti, the protocol may also be used for other mosquito species or other experimental treatment conditions, with the caveat that certain biological contexts may require special adaptations.
Project description:CRISPR/Cas9 has been widely used for the efficient generation of genetically modified animals; however, this system could have unexpected off-target effects. In the present study, we confirmed the validity of a high-fidelity Cas9 variant, HypaCas9, for accurate genome editing in mouse zygotes. HypaCas9 efficiently modified the target locus while minimizing off-target effects even in a single-nucleotide mismatched sequence. Furthermore, by applying HypaCas9 to the discrimination of SNP in hybrid strain-derived zygotes, we accomplished allele-specific gene modifications and successfully generated mice with a monoallelic mutation in an essential gene. These results suggest that the improved accuracy of HypaCas9 facilitates the generation of genetically modified animals.
Project description:The Cas9 nuclease from Staphylococcus aureus (SaCas9) holds great potential for use in gene therapy, and variants with increased fidelity have been engineered. However, we find that existing variants have not reached the greatest accuracy to discriminate base mismatches and exhibited much reduced activity when their mutations were grafted onto the KKH mutant of SaCas9 for editing an expanded set of DNA targets. We performed structure-guided combinatorial mutagenesis to re-engineer KKH-SaCas9 with enhanced accuracy. We uncover that introducing a Y239H mutation on KKH-SaCas9's REC domain substantially reduces off-target edits while retaining high on-target activity when added to a set of mutations on REC and RuvC domains that lessen its interactions with the target DNA strand. The Y239H mutation is modelled to have removed an interaction from the REC domain with the guide RNA backbone in the guide RNA-DNA heteroduplex structure. We further confirmed the greatly improved genome-wide editing accuracy and single-base mismatch discrimination of our engineered variants, named KKH-SaCas9-SAV1 and SAV2, in human cells. In addition to generating broadly useful KKH-SaCas9 variants with unprecedented accuracy, our findings demonstrate the feasibility for multi-domain combinatorial mutagenesis on SaCas9's DNA- and guide RNA- interacting residues to optimize its editing fidelity.