Climate variability and outbreaks of infectious diseases in Europe.
Ontology highlight
ABSTRACT: Several studies provide evidence of a link between vector-borne disease outbreaks and El Niño driven climate anomalies. Less investigated are the effects of the North Atlantic Oscillation (NAO). Here, we test its impact on outbreak occurrences of 13 infectious diseases over Europe during the last fifty years, controlling for potential bias due to increased surveillance and detection. NAO variation statistically influenced the outbreak occurrence of eleven of the infectious diseases. Seven diseases were associated with winter NAO positive phases in northern Europe, and therefore with above-average temperatures and precipitation. Two diseases were associated with the summer or spring NAO negative phases in northern Europe, and therefore with below-average temperatures and precipitation. Two diseases were associated with summer positive or negative NAO phases in southern Mediterranean countries. These findings suggest that there is potential for developing early warning systems, based on climatic variation information, for improved outbreak control and management.
Project description:Tree mortality is an important process in forest ecosystems, frequently hypothesized to be highly climate sensitive. Yet, tree death remains one of the least understood processes of forest dynamics. Recently, changes in tree mortality have been observed in forests around the globe, which could profoundly affect ecosystem functioning and services provisioning to society. We describe continental-scale patterns of recent tree mortality from the only consistent pan-European forest monitoring network, identifying recent mortality hotspots in southern and northern Europe. Analyzing 925,462 annual observations of 235,895 trees between 2000 and 2012, we determine the influence of climate variability and tree age on interannual variation in tree mortality using Cox proportional hazard models. Warm summers as well as high seasonal variability in precipitation increased the likelihood of tree death. However, our data also suggest that reduced cold-induced mortality could compensate increased mortality related to peak temperatures in a warming climate. Besides climate variability, age was an important driver of tree mortality, with individual mortality probability decreasing with age over the first century of a trees life. A considerable portion of the observed variation in tree mortality could be explained by satellite-derived net primary productivity, suggesting that widely available remote sensing products can be used as an early warning indicator of widespread tree mortality. Our findings advance the understanding of patterns of large-scale tree mortality by demonstrating the influence of seasonal and diurnal climate variation, and highlight the potential of state-of-the-art remote sensing to anticipate an increased likelihood of tree mortality in space and time.
Project description:BackgroundMany tropical countries are currently experiencing dengue (DEN), chikungunya (CHIK) and also more recently Zika (ZIKA) epidemics (particularly in Latin America). Although the risk of transmission and spread of these infections in temperate regions remains a controversial issue, vector-borne diseases have been widely reported in the media and have been the focus of preventive strategies by national and international policy-makers and public health authorities. In this context, we wanted to determine the extent of risk perception in infectious diseases (ID) physicians of the current and future risk of arboviral disease introduction, autochthonous case development and epidemic scenarios in France, Western Europe.MethodsTo this aim, we developed an original standardized questionnaire survey which was disseminated by the French Infectious Diseases Society to ID physician members.ResultsWe found that ID physicians perceived the risk of introduction and outbreak development of DEN, CHIK and ZIKA in France to be low to medium-low. Generalized Linear Model(s) identified medical school training, the extent of professional experience, and awareness of the French national plan regarding arboviral infections as significant predictors for lower risk perception among respondents.ConclusionDespite the fact that arboviral diseases are increasingly being imported into France, sometimes resulting in sporadic autochtonous transmission, French ID physicians do not perceive the risk as high. Better communication and education targeting health professionals and citizens will be needed to enhance the effectiveness of the French national plan to prepare against arboviral diseases.
Project description:Among abundant reconstructions of Holocene climate in Europe, only a handful has addressed winter conditions, and most of these are restricted in length and/or resolution. Here we present a record of late autumn through early winter air temperature and moisture source changes in East-Central Europe for the Holocene, based on stable isotopic analysis of an ice core recovered from a cave in the Romanian Carpathian Mountains. During the past 10,000 years, reconstructed temperature changes followed insolation, with a minimum in the early Holocene, followed by gradual and continuous increase towards the mid-to-late-Holocene peak (between 4-2 kcal BP), and finally by a decrease after 0.8 kcal BP towards a minimum during the Little Ice Age (AD 1300-1850). Reconstructed early Holocene atmospheric circulation patterns were similar to those characteristics of the negative phase of the North Atlantic Oscillation (NAO), while in the late Holocene they resembled those prevailing in the positive NAO phase. The transition between the two regimes occurred abruptly at around 4.7 kcal BP. Remarkably, the widespread cooling at 8.2 kcal BP is not seen very well as a temperature change, but as a shift in moisture source, suggesting weaker westerlies and increased Mediterranean cyclones penetrating northward at this time.
Project description:BackgroundDesert dust outbreaks and dust storms are the major source of particulate matter globally and pose a major threat to human health. We investigated the microorganisms transported with desert dust particles and evaluated their potential impact on human health.MethodsA systematic review of all reports on the association between non-anthropogenic desert dust pollution, dust microorganisms and human health is conducted.ResultsIn total, 51 articles were included in this review. The affected regions studied were Asia (32/51, 62.7%) followed by Europe (9/51, 17.6%), America (6/51, 11.8%), Africa (4/51, 7.8%) and Australia (1/51, 2.0%). The Sahara Desert was the most frequent source of dust, followed by Asian and American deserts. In 39/51 studies the dust-related microbiome was analyzed, while, in 12/51 reports, the association of desert dust with infectious disease outbreaks was examined. Pathogenic and opportunistic agents were isolated from dust in 24/39 (61.5%) and 29/39 (74.4%) of the studies, respectively. A significant association of dust events with infectious disease outbreaks was found in 10/12 (83.3%) reports. The infectious diseases that were mostly investigated with dust outbreaks were pneumonia, respiratory tract infections, COVID-19, pulmonary tuberculosis and coccidioidomycosis.ConclusionsDesert dust outbreaks are vehicles of a significant number of pathogenic or opportunistic microorganisms and limited data indicate an association between dust events and infectious disease outbreaks. Further research is required to strengthen the correlation between dust events and infectious diseases and subsequently guide preventive public health measures.
Project description:Epidemic spreading on social networks with quenched connections is strongly influenced by dynamic correlations between connected nodes, posing theoretical challenges in predicting outbreaks of infectious diseases. The quenched connections introduce dynamic correlations, indicating that the infection of one node increases the likelihood of infection among its neighboring nodes. These dynamic correlations pose significant difficulties in developing comprehensive theories for threshold determination. Determining the precise epidemic threshold is pivotal for diseases control. In this study, we propose a general protocol for accurately determining epidemic thresholds by introducing a new set of fundamental conditions, where the number of connections between individuals of each type remains constant in the stationary state, and by devising a rescaling method for infection rates. Our general protocol is applicable to diverse epidemic models, regardless of the number of stages and transmission modes. To validate our protocol's effectiveness, we apply it to two widely recognized standard models, the susceptible-infected-recovered-susceptible model and the contact process model, both of which have eluded precise threshold determination using existing sophisticated theories. Our results offer essential tools to enhance disease control strategies and preparedness in an ever-evolving landscape of infectious diseases.
Project description:Dengue is a mosquito-borne viral disease of global impact. In Venezuela, dengue has emerged as one of the most important public health problems of urban areas with frequent epidemics since 2001. The long-term pattern of this disease has involved not only a general upward trend in cases but also a dramatic increase in the size and frequency of epidemic outbreaks. By assuming that climate variability has a relevant influence on these changes in time, we quantified the periodicity of dengue incidence in time-series of data from two northern regions of Venezuela. Disease cycles of 1 and 3-4 years (p < 0.05) were detected. We determined that dengue cycles corresponded with local climate and the El Niño Southern Oscillation (ENSO) variation at both seasonal and inter-annual scales (every 2-3 years). Dengue incidence peaks were more prevalent during the warmer and dryer years of El Niño confirming that ENSO is a regional climatic driver of such long-term periodicity through local changes in temperature and rainfall. Our findings support the evidence of the effect of climate on dengue dynamics and advocate the incorporation of climate information in the surveillance and prediction of this arboviral disease in Venezuela.
Project description:Global climate change, driven by anthropogenic greenhouse gas emissions, is being particularly felt in Canada, with warming generally greater than in the rest of the world. Continued warming will be accompanied by changes in precipitation, which will vary across the country and seasons, and by increasing climate variability and extreme weather events. Climate change will likely drive the emergence of infectious diseases in Canada by northward spread from the United States and introduction from elsewhere in the world via air and sea transport. Diseases endemic to Canada are also likely to re-emerge. This special issue describes key infectious disease risks associated with climate change. These include emergence of tick-borne diseases in addition to Lyme disease, the possible introduction of exotic mosquito-borne diseases such as malaria and dengue, more epidemics of Canada-endemic vector-borne diseases such as West Nile virus, and increased incidence of foodborne illnesses. Risk is likely to be compounded by an aging population affected by chronic diseases, which results in greater sensitivity to infectious diseases. Identifying emerging disease risks is essential to assess our vulnerability, and a starting point to identify where public health effort is required to reduce the vulnerability and exposure of the Canadian population.
Project description:Studies show that climate variability drives interannual changes in meteorological variables in Europe, which directly or indirectly impacts crop production. However, there is no climate-based decision model that uses indices of atmospheric oscillation to predict agricultural production risks in Europe on multiple time-scales during the growing season. We used Fast-and-Frugal trees to predict sugar beet production, applying five large-scale indices of atmospheric oscillation: El Niño Southern Oscillation, North Atlantic Oscillation, Scandinavian Pattern, East Atlantic Pattern, and East Atlantic/West Russian pattern. We found that Fast-and-Frugal trees predicted high/low sugar beet production events in 77% of the investigated regions, corresponding to 81% of total European sugar beet production. For nearly half of these regions, high/low production could be predicted six or five months before the start of the sugar beet harvesting season, which represents approximately 44% of the mean annual sugar beet produced in all investigated areas. Providing early warning of crop production shortages/excess allows decision makers to prepare in advance. Therefore, the use of the indices of climate variability to forecast crop production is a promising tool to strengthen European agricultural climate resilience.
Project description:BackgroundThe COVID-19 pandemic resulted in a sharp decline of post-travel patient encounters at the European sentinel surveillance network (EuroTravNet) of travellers' health. We report on the impact of COVID-19 on travel-related infectious diseases as recorded by EuroTravNet clinics.MethodsTravelers who presented between January 1, 2019 and September 30, 2021 were included. Comparisons were made between the pre-pandemic period (14 months from January 1, 2019 to February 29, 2020); and the pandemic period (19 months from March 1, 2020 to September 30, 2021).ResultsOf the 15,124 visits to the network during the 33-month observation period, 10,941 (72%) were during the pre-pandemic period, and 4183 (28%) during the pandemic period. Average monthly visits declined from 782/month (pre-COVID-19 era) to 220/month (COVID-19 pandemic era). Among non-migrants, the top-10 countries of exposure changed after onset of the COVID-19 pandemic; destinations such as Italy and Austria, where COVID-19 exposure peaked in the first months, replaced typical travel destinations in Asia (Thailand, Indonesia, India). There was a small decline in migrant patients reported, with little change in the top countries of exposure (Bolivia, Mali). The three top diagnoses with the largest overall decreases in relative frequency were acute gastroenteritis (-5.3%), rabies post-exposure prophylaxis (-2.8%), and dengue (-2.6%). Apart from COVID-19 (which rose from 0.1% to 12.7%), the three top diagnoses with the largest overall relative frequency increase were schistosomiasis (+4.9%), strongyloidiasis (+2.7%), and latent tuberculosis (+2.4%).ConclusionsA marked COVID-19 pandemic-induced decline in global travel activities is reflected in reduced travel-related infectious diseases sentinel surveillance reporting.
Project description:We analyzed prospective data on 17,228 European patients who sought treatment at GeoSentinel sites from 1997 to 2007. Gastrointestinal illness (particularly in tourists), fever (those visiting friends and relatives [VFRs]), and skin disorders (in tourists) were the most common reasons for seeking medical care. Diagnoses varied by country of origin, region visited, or categories of travelers. VFRs who returned from sub-Saharan Africa and Indian Ocean islands were more likely to experience falciparum malaria than any other group. Multiple correspondence analysis identified Italian, French, and Swiss VFRs and expatriate travelers to sub-Saharan Africa and Indian Ocean Islands as most likely to exhibit febrile illnesses. German tourists to Southeast and south-central Asia were most likely to seek treatment for acute diarrhea. Non-European travelers (12,663 patients from other industrialized countries) were less likely to acquire certain travel-associated infectious diseases. These results should be considered in the practice of travel medicine and development of health recommendations for European travelers.