More than the sum of its parts: coarse-grained peptide-lipid interactions from a simple cross-parametrization.
Ontology highlight
ABSTRACT: Interfacial systems are at the core of fascinating phenomena in many disciplines, such as biochemistry, soft-matter physics, and food science. However, the parametrization of accurate, reliable, and consistent coarse-grained (CG) models for systems at interfaces remains a challenging endeavor. In the present work, we explore to what extent two independently developed solvent-free CG models of peptides and lipids--of different mapping schemes, parametrization methods, target functions, and validation criteria--can be combined by only tuning the cross-interactions. Our results show that the cross-parametrization can reproduce a number of structural properties of membrane peptides (for example, tilt and hydrophobic mismatch), in agreement with existing peptide-lipid CG force fields. We find encouraging results for two challenging biophysical problems: (i) membrane pore formation mediated by the cooperative action of several antimicrobial peptides, and (ii) the insertion and folding of the helix-forming peptide WALP23 in the membrane.
SUBMITTER: Bereau T
PROVIDER: S-EPMC3977883 | biostudies-other | 2014 Mar
REPOSITORIES: biostudies-other
ACCESS DATA