ABSTRACT: The exceptional sensitivity of mammalian hearing organs is attributed to an active process, where force produced by sensory cells boost sound-induced vibrations, making soft sounds audible. This process is thought to be local, with each section of the hearing organ capable of amplifying sound-evoked movement, and nearly instantaneous, since amplification can work for sounds at frequencies up to 100 kHz in some species. To test these fundamental precepts, we developed a method for focally stimulating the living hearing organ with light. Light pulses caused intense and highly damped mechanical responses followed by traveling waves that developed with considerable delay. The delayed response was identical to movements evoked by click-like sounds. This shows that the active process is neither local nor instantaneous, but requires mechanical waves traveling from the cochlear base toward its apex. A physiologically-based mathematical model shows that such waves engage the active process, enhancing hearing sensitivity.
Project description:A new method for visualizing vibrating structures is described. The system provides a means to capture very fast repeating events by relatively minor modifications to a standard confocal microscope. An acousto-optic modulator was inserted in the beam path, generating brief pulses of laser light. Images were formed by summing consecutive frames until every pixel of the resulting image had been exposed to a laser pulse. Images were analyzed using a new method for optical flow computation; it was validated through introducing artificial displacements in confocal images. Displacements in the range of 0.8 to 4 pixels were measured with 5% error or better. The lower limit for reliable motion detection was 20% of the pixel size. These methods were used for investigating the motion pattern of the vibrating hearing organ. In contrast to standard theory, we show that the organ of Corti possesses several degrees of freedom during sound-evoked vibration. Outer hair cells showed motion indicative of deformation. After acoustic overstimulation, supporting cells contracted. This slowly developing structural change was visualized during simultaneous intense sound stimulation and its speed measured with the optical flow technique.
Project description:Bushcrickets (katydids) rely on only 20 to 120 sensory units located in their forelegs to sense sound. Situated in tiny hearing organs less than 1 mm long (40× shorter than the human cochlea), they cover a wide frequency range from 1 kHz up to ultrasounds, in tonotopic order. The underlying mechanisms of this miniaturized frequency-place map are unknown. Sensory dendrites in the hearing organ (crista acustica [CA]) are hypothesized to stretch, thereby driving mechanostransduction and frequency tuning. However, this has not been experimentally confirmed. Using optical coherence tomography (OCT) vibrometry, we measured the relative motion of structures within and adjacent to the CA of the bushcricket Mecopoda elongata We found different modes of nanovibration in the CA that have not been previously described. The two tympana and the adjacent septum of the foreleg that enclose the CA were recorded simultaneously, revealing an antiphasic lever motion strikingly reminiscent of vertebrate middle ears. Over the entire length of the CA, we were able to separate and compare vibrations of the top (cap cells) and base (dorsal wall) of the sensory tissue. The tuning of these two structures, only 15 to 60 μm (micrometer) apart, differed systematically in sharpness and best frequency, revealing a tuned periodic deformation of the CA. The relative motion of the two structures, a potential drive of transduction, demonstrated sharper tuning than either of them. The micromechanical complexity indicates that the bushcricket ear invokes multiple degrees of freedom to achieve frequency separation with a limited number of sensory cells.
Project description:Noise induced hearing loss (NIHL) is accompanied by a reduction of cochlear hair cells and spiral ganglion neurons. Different approaches have been applied to prevent noise induced apoptosis / necrosis. Physical intervention is one technique currently under investigation. Specific wavelengths within the near-infrared light (NIR)-spectrum are known to influence cytochrome-c-oxidase activity, which leads in turn to a decrease in apoptotic mechanisms. It has been shown recently that NIR can significantly decrease the cochlear hair cell loss if applied daily for 12 days after a noise exposure. However, it is still unclear if a single NIR-treatment, just before a noise exposure, could induce similar protective effects. Therefore, the present study was conducted to investigate the effect of a single NIR-pre-treatment aimed at preventing or limiting NIHL. The cochleae of adult NMRI-mice were pre-treated with NIR-light (808 nm, 120 mW) for 5, 10, 20, 30 or 40 minutes via the external ear canal. All animals were noised exposed immediately after the pre-treatment by broad band noise (5-20 kHz) for 30 minutes at 115 dB SPL. Frequency specific ABR-recordings to determine auditory threshold shift were carried out before the pre-treatment and two weeks after the noise exposure. The amplitude increase for wave IV and cochlear hair cell loss were determined. A further group of similar mice was noise exposed only and served as a control for the NIR pre-exposed groups. Two weeks after noise exposure, the ABR threshold shifts of NIR-treated animals were significantly lower (p < 0.05) than those of the control animals. The significance was at three frequencies for the 5-minute pre-treatment group and across the entire frequency range for all other treatment groups. Due to NIR light, the amplitude of wave four deteriorates significantly less after noise exposure than in controls. The NIR pre-treatment had no effect on the loss of outer hair cells, which was just as high with or without NIR-light pre-exposure. Relative to the entire number of outer hair cells across the whole cochlea, outer hair cell loss was rather negligible. No inner hair cell loss whatever was detected. Our results suggest that a single NIR pre-treatment induces a very effective protection of cochlear structures from noise exposure. Pre-exposure of 10 min seems to emerge as the optimal dosage for our experimental setup. A saturated effect occurred with higher dosage-treatments. These results are relevant for protection of residual hearing in otoneurosurgery such as cochlear implantation.
Project description:Noise-induced hearing loss is one of the major causes of acquired sensorineural hearing loss in modern society. While people with excessive exposure to noise are frequently the population with a lifestyle of irregular circadian rhythms, the effects of circadian dysregulation on the auditory system are still little known. Here, we disturbed the circadian clock in the cochlea of male CBA/CaJ mice by constant light (LL) or constant dark. LL significantly repressed circadian rhythmicity of circadian clock genes Per1, Per2, Rev-erbα, Bmal1, and Clock in the cochlea, whereas the auditory brainstem response thresholds were unaffected. After exposure to low-intensity (92 dB) noise, mice under LL condition initially showed similar temporary threshold shifts to mice under normal light-dark cycle, and mice under both conditions returned to normal thresholds after 3 weeks. However, LL augmented high-intensity (106 dB) noise-induced permanent threshold shifts, particularly at 32 kHz. The loss of outer hair cells (OHCs) and the reduction of synaptic ribbons were also higher in mice under LL after noise exposure. Additionally, LL enhanced high-intensity noise-induced 4-hydroxynonenal in the OHCs. Our findings convey new insight into the deleterious effect of an irregular biological clock on the auditory system.
Project description:Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (Balaenoptera physalus) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale's head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.
Project description:Despite the prevalence and recognition of its detrimental impact, clinical complications of sepsis remain a major challenge. Here, we investigated the effects of myeloid ferritin heavy chain (FtH) in regulating the pathogenic sequelae of sepsis. We demonstrate that deletion of myeloid FtH leads to protection against lipopolysaccharide-induced endotoxemia and cecal ligation and puncture (CLP)-induced model of sepsis as evidenced by reduced cytokine levels, multi-organ dysfunction and mortality. We identified that such protection is predominantly mediated by the compensatory increase in circulating ferritin (ferritin light chain; FtL) in the absence of myeloid FtH. Our in vitro and in vivo studies indicate that prior exposure to ferritin light chain restrains an otherwise dysregulated response to infection. These findings are mediated by an inhibitory action of FtL on NF-κB activation, a key signaling pathway that is implicated in the pathogenesis of sepsis. We further identified that LPS mediated activation of MAPK pathways, specifically, JNK, and ERK were also reduced with FtL pre-treatment. Taken together, our findings elucidate a crucial immunomodulatory function for circulating ferritin that challenges the traditional view of this protein as a mere marker of body iron stores. Accordingly, these findings will stimulate investigations to the adaptive nature of this protein in diverse clinical settings.
Project description:BackgroundPlants adjust their growth orientations primarily in response to light and gravity signals. Considering that the gravity vector is fixed and the angle of light incidence is constantly changing, plants must somehow integrate these signals to establish organ orientation, commonly referred to as gravitropic set-point angle (GSA). The IGT gene family contains known regulators of GSA, including the gene clades LAZY, DEEPER ROOTING (DRO), and TILLER ANGLE CONTROL (TAC).ResultsHere, we investigated the influence of light on different aspects of GSA phenotypes in LAZY and DRO mutants, as well as the influence of known light signaling pathways on IGT gene expression. Phenotypic analysis revealed that LAZY and DRO genes are collectively required for changes in the angle of shoot branch tip and root growth in response to light. Single lazy1 mutant branch tips turn upward in the absence of light and in low light, similar to wild-type, and mimic triple and quadruple IGT mutants in constant light and high-light conditions, while triple and quadruple IGT/LAZY mutants show little to no response to changing light regimes. Further, the expression of IGT/LAZY genes is differentially influenced by daylength, circadian clock, and light signaling.ConclusionsCollectively, the data show that differential expression of LAZY and DRO genes are required to enable plants to alter organ angles in response to light-mediated signals.
Project description:The novel therapeutic target cytokine LIGHT (TNFSF14) was recently shown to play a major role in COVID-19-induced acute respiratory distress syndrome (ARDS). This study aims to investigate the associations of plasma LIGHT and another potentially targetable cytokine, interleukin-18 (IL-18), with ARDS, acute hypoxic respiratory failure (AHRF), or acute kidney injury (AKI), caused by non-COVID-19 viral or bacterial sepsis. A total of 280 subjects diagnosed with sepsis, including 91 cases with sepsis triggered by viral infections, were investigated in this cohort study. Day 0 plasma LIGHT and IL-18, as well as 59 other biomarkers (cytokines, chemokines, and acute-phase reactants) were measured by sensitive bead immunoassay and associated with symptom severity. We observed significantly increased LIGHT level in both bacterial sepsis patients (p = 1.80 × 10-5) and patients with sepsis from viral infections (p = 1.78 × 10-3). In bacterial sepsis, increased LIGHT level was associated with ARDS, AKI, and higher Apache III scores, findings also supported by correlations of LIGHT with other biomarkers of organ failure. IL-18 levels were highly variable across individuals and consistently correlated with Apache III scores, mortality, and AKI in both bacterial and viral sepsis. There was no correlation between LIGHT and IL-18. For the first time, we demonstrate independent effects of LIGHT and IL-18 in septic organ failure. The association of plasma LIGHT with AHRF suggests that targeting the pathway warrants exploration, and ongoing trials may soon elucidate whether this is beneficial. Given the large variance of plasma IL-18 among septic subjects, targeting this pathway requires precise application.
Project description:This article aims to propose a cantilever based cooling device employing non-axis symmetric placement of bulk ferroelectric patches. Ambient mechanical vibrations produce large stresses in cantilevers resulting in elastocaloric effect associated with ferroelectrics. Further, design allows cascading of several cantilevers to achieve large cooling response. A finite element analysis of the system was performed using material properties of bulk 0.50Ba(Zr0.2Ti0.8)O3-0.50(Ba0.7Ca0.3)TiO3. An individual element could produce a peak elastocaloric effect of 0.02 K (324 K); whereas the proposed system could achieve a temperature drop of 0.2 K within 50 seconds (10 elements, 1.5 Hz). Furthermore, net cooling can be further improved about ~2 K (using 10 cantilevers) for a starting temperature of 358 K. This study shows that elastocaloric effect in ferroelectric materials is capable of converting waste mechanical vibration into refrigeration effect which is not reported so far.
Project description:The droplet response to vibrations has been well characterized on open substrates, but microfluidic applications for droplets on open systems are limited by rapid evaporation rates and prone to environmental contamination. However, the response of enclosed droplets to vibration is less understood. Here, we investigate the effects of a dual-plate enclosure on droplet transport for the anisotropic ratchet conveyor system. This system uses an asymmetric pattern of hydrophilic rungs to transport droplets with an applied vibration. Through this work, we discovered that the addition of a substrate on top of the droplet, held in place with a 3D printed fixture, extends the functional frequency range for droplet transport and normalizes the device performance for droplets of different volumes. Furthermore, we found that the edge movements are anti-phasic between top and bottom substrates, providing a velocity profile that is correlated to vibration frequency, unlike the resonance-dependent profiles observed on open systems. These results expand the capabilities of this system, providing avenues for new applications and innovation, but also new insights for droplet mechanics in response to applied vibration.