The visual magnocellular-dorsal dysfunction in Chinese children with developmental dyslexia impedes Chinese character recognition.
Ontology highlight
ABSTRACT: The visual magnocellular-dorsal (M-D) deficit theory of developmental dyslexia (DD) is still highly debated. Many researchers have made great efforts to investigate the relationship between M-D dysfunction and reading disability. Given that visual analysis plays an important role in Chinese reading, the present study tried to examine how the M-D dysfunction affected Chinese character recognition in Chinese children with DD. Sixteen DD children with M-D deficit, fifteen DD children with normal M-D function and twenty-seven age-matched typically developing children participated in this study. A global/local decision task was adopted, in which we manipulated the spatial frequency of target characters to separate an M-D condition from an unfiltered condition. Results of reaction times and error rates showed that in the M-D condition both M-D normal dyslexics and controls exhibited a significant global precedence effect, with faster responses and lower error rates in global decision than in local decision. In contrast, this global advantage was absent for the M-D impaired dyslexics. Accordingly, we propose that the M-D impairment present in some but not all dyslexics might influence global recognition of Chinese characters in this subgroup of children with DD, which might be implicated in their difficulties in learning to read.
Project description:In a digital era that neglects handwriting, the current study is significant because it examines the mechanisms underlying this process. We recruited 9- to 10-year-old Chinese children (n = 24), who were at an important period of handwriting development, and adult college students (n = 24), for both behavioral and electroencephalogram (EEG) experiments. We designed four learning conditions: handwriting Chinese (HC), viewing Chinese (VC), drawing shapes followed by Chinese recognition (DC), and drawing shapes followed by English recognition (DE). Both behavioral and EEG results showed that HC facilitated visual word recognition compared to VC, and behavioral results showed that HC facilitated visual word recognition compared to drawing shapes. HC and VC resulted in a lateralization of the N170 in adults, but not in children. Taken together, the results of the study suggest benefits of handwriting on the neural processing and behavioral performance in response to Chinese characters. The study results argue for maintaining handwriting practices to promote the perception of visual word forms in the digital age.
Project description:Measuring Chinese character recognition ability is essential in research on character learning among learners of Chinese as a second language (CSL). Three methods are typically used to evaluate character recognition competence by investigating the following properties of a given character: (a) pronunciation (phonological method), (b) meaning (semantic method), and (c) pronunciation and meaning (phonological and semantic or PS method). However, no study has explored the similar or dissimilar outcomes that these three measurements might yield. The current study examined this issue by testing 162 CSL learners with various L1 backgrounds and Chinese proficiency levels. Participants' performance in character recognition measured using a phonological method, a semantic method, and a PS method was compared, which led to two major findings. In terms of similarity, participants' performance in character recognition and the influence of L1 background and Chinese proficiency level on character recognition was similar across the three methods. As for differences, the semantic method could yield a character recognition test with better quality than the other two methods, and the three methods yielded different best fitting models and showed different predictions for Chinese proficiency across different L1 groups. Theoretical and practical implications of these findings are proposed.
Project description:The Transformer shows good prospects in computer vision. However, the Swin Transformer model has the disadvantage of a large number of parameters and high computational effort. To effectively solve these problems of the model, a simplified Swin Transformer (S-Swin Transformer) model was proposed in this article for handwritten Chinese character recognition. The model simplifies the initial four hierarchical stages into three hierarchical stages. In addition, the new model increases the size of the window in the window attention; the number of patches in the window is larger; and the perceptual field of the window is increased. As the network model deepens, the size of patches becomes larger, and the perceived range of each patch increases. Meanwhile, the purpose of shifting the window's attention is to enhance the information interaction between the window and the window. Experimental results show that the verification accuracy improves slightly as the window becomes larger. The best validation accuracy of the simplified Swin Transformer model on the dataset reached 95.70%. The number of parameters is only 8.69 million, and FLOPs are 2.90G, which greatly reduces the number of parameters and computation of the model and proves the correctness and validity of the proposed model.
Project description:Although there is mounting evidence that input from the dorsal visual pathway is crucial for object processes in the ventral pathway, the specific functional contributions of dorsal cortex to these processes remain poorly understood. Here, we hypothesized that dorsal cortex computes the spatial relations among an object's parts, a process crucial for forming global shape percepts, and transmits this information to the ventral pathway to support object categorization. Using fMRI with human participants (females and males), we discovered regions in the intraparietal sulcus (IPS) that were selectively involved in computing object-centered part relations. These regions exhibited task-dependent functional and effective connectivity with ventral cortex, and were distinct from other dorsal regions, such as those representing allocentric relations, 3D shape, and tools. In a subsequent experiment, we found that the multivariate response of posterior (p)IPS, defined on the basis of part-relations, could be used to decode object category at levels comparable to ventral object regions. Moreover, mediation and multivariate effective connectivity analyses further suggested that IPS may account for representations of part relations in the ventral pathway. Together, our results highlight specific contributions of the dorsal visual pathway to object recognition. We suggest that dorsal cortex is a crucial source of input to the ventral pathway and may support the ability to categorize objects on the basis of global shape.SIGNIFICANCE STATEMENT Humans categorize novel objects rapidly and effortlessly. Such categorization is achieved by representing an object's global shape structure, that is, the relations among object parts. Yet, despite their importance, it is unclear how part relations are represented neurally. Here, we hypothesized that object-centered part relations may be computed by the dorsal visual pathway, which is typically implicated in visuospatial processing. Using fMRI, we identified regions selective for the part relations in dorsal cortex. We found that these regions can support object categorization, and even mediate representations of part relations in the ventral pathway, the region typically thought to support object categorization. Together, these findings shed light on the broader network of brain regions that support object categorization.
Project description:The present study examined developmental changes, over a 6-year period, in the relationship between character reading ability and orthographic awareness in Chinese from the first year of kindergarten to the third year of primary school in two separate samples: the kindergarten sample of 96 children was assessed three times in the first, second, and third years of kindergarten (K1, K2, K3) with 12-month intervals. The primary school sample of 204 children was assessed four times in the first and second semesters of grade 1 (P1-S1; P1-S2), first semester of grade 2 (P2-S1) and grade 3 (P3-S1), with the first three waves at 6-month intervals and the final wave at 12-month interval. Cross-lagged path analysis showed three developmental stages of the relationship between Chinese character reading and orthographic awareness. At stage 1, reading ability in K1 and K2 predicted subsequent orthographic awareness in K2 and K3. At stage 2, there was a bidirectional relationship between character reading and orthographic awareness from P1-S1 to P1-S2. At stage 3, orthographic awareness at P1-S2 and P2-S1 predicted subsequent character reading ability at P2-S1 and P3-S1, but the prediction from reading to orthographic awareness vanished at this stage. The results depict a full developmental picture of the changed relationship between Chinese character reading and orthographic awareness over time. Beginning readers demonstrated impressive abilities in discovering or extracting orthographic regularities with increased reading ability.
Project description:Deficits in the visual attention span (VAS) are thought to hamper reading performance in dyslexic individuals. However, the causal relationship between VAS deficits and reading disability remains unclear. The present study attempts to address this issue by using a VAS-based intervention to explore the possible influence of VAS on reading processes in Chinese children with dyslexia. Given the influence of the heterogeneity of dyslexia on intervention effects, VAS-impaired dyslexic and VAS-intact dyslexic individuals were separately trained. Therefore, there were five groups of participants in this study, including 10 trained dyslexic individuals with VAS deficits and 10 untrained dyslexic individuals with VAS dysfunction as the baseline reference, 10 trained and 10 untrained dyslexic individuals with an intact VAS, and fourteen age-matched normal readers for reference of normal level. All participants completed reading measures and a visual 1-back task, reflecting VAS capacity with non-verbal stimuli and non-verbal responses, before and after VAS-based training. VAS-based training tasks included a length estimation task regarding the bottom-up attention, visual search and digit cancelling tasks targeting top-down attentional modulation, and visual tracking tasks to train eye-movement control. The results showed that visual training only helped improve VAS skills in VAS-impaired dyslexic individuals receiving training. Meanwhile, their silent sentence reading accuracy improved after training, and there was a significant relationship between training improvements in VAS function and reading performance. The current findings suggest that VAS-based training has a far-transfer effect on linguistic level (i.e., fluent reading). These findings suggest the possibility that VAS-related training may help children with dyslexia improve their reading skills.
Project description:Faces convey social information such as emotion and speech. Facial emotion processing is supported via interactions between dorsal-movement and ventral-form visual cortex regions. Here, we explored, for the first time, whether similar dorsal-ventral interactions (assessed via functional connectivity), might also exist for visual-speech processing. We then examined whether altered dorsal-ventral connectivity is observed in adults with high-functioning autism spectrum disorder (ASD), a disorder associated with impaired visual-speech recognition. We acquired functional magnetic resonance imaging (fMRI) data with concurrent eye tracking in pairwise matched control and ASD participants. In both groups, dorsal-movement regions in the visual motion area 5 (V5/MT) and the temporal visual speech area (TVSA) were functionally connected to ventral-form regions (i.e., the occipital face area [OFA] and the fusiform face area [FFA]) during the recognition of visual speech, in contrast to the recognition of face identity. Notably, parts of this functional connectivity were decreased in the ASD group compared to the controls (i.e., right V5/MT-right OFA, left TVSA-left FFA). The results confirmed our hypothesis that functional connectivity between dorsal-movement and ventral-form regions exists during visual-speech processing. Its partial dysfunction in ASD might contribute to difficulties in the recognition of dynamic face information relevant for successful face-to-face communication.
Project description:Silent word reading leads to the activation of orthographic (spelling), semantic (meaning), as well as phonological (sound) information. For bilinguals, native language information can also be activated automatically when they read words in their second language. For example, when Chinese-English bilinguals read words in their second language (English), the phonology of the Chinese translations is automatically activated. Chinese phonology, however, consists of consonants and vowels (segmental) and tonal information. To what extent these two aspects of Chinese phonology are activated is yet unclear. Here, we used behavioural measures, event-related potentials and oscillatory EEG to investigate Chinese segmental and tonal activation during word recognition. Evidence of Chinese segmental activation was found when bilinguals read English words (faster responses, reduced N400, gamma-band power reduction) and when they read Chinese words (increased LPC, gamma-band power reduction). In contrast, evidence for Chinese tonal activation was only found when bilinguals read Chinese words (gamma-band power increase). Together, our converging behavioural and electrophysiological evidence indicates that Chinese segmental information is activated during English word reading, whereas both segmental and tonal information are activated during Chinese word reading. Importantly, gamma-band oscillations are modulated differently by tonal and segmental activation, suggesting independent processing of Chinese tones and segments.
Project description:ImportanceDevelopmental dyslexia (DD) is a specific learning disability of neurobiological origin whose core cognitive deficit is widely believed to involve language (phonological) processing. Although reading is also a visual task, the potential role of vision in DD has been controversial, and little is known about the integrity of visual function in individuals with DD.ObjectiveTo assess the frequency of visual deficits (specifically vergence, accommodation, and ocular motor tracking) in children with DD compared with a control group of typically developing readers.Design, setting, and participantsA prospective, uncontrolled observational study was conducted from May 28 to October 17, 2016, in an outpatient ophthalmology ambulatory clinic among 29 children with DD and 33 typically developing (TD) children.Main outcomes and measuresPrimary outcomes were frequencies of deficits in vergence (amplitude, fusional ranges, and facility), accommodation (amplitude, facility, and accuracy), and ocular motor tracking (Developmental Eye Movement test and Visagraph eye tracker).ResultsAmong the children with DD (10 girls and 19 boys; mean [SD] age, 10.3 [1.2] years) and the TD group (21 girls and 12 boys; mean [SD] age, 9.4 [1.4] years), accommodation deficits were more frequent in the DD group than the TD group (16 [55%] vs 3 [9%]; difference = 46%; 95% CI, 25%-67%; P < .001). For ocular motor tracking, 18 children in the DD group (62%) had scores in the impaired range (in the Developmental Eye Movement test, Visagraph, or both) vs 5 children in the TD group (15%) (difference, 47%; 95% CI, 25%-69%; P < .001). Vergence deficits occurred in 10 children in the DD group (34%) and 5 children in the TD group (15%) (difference, 19%; 95% CI, -2.2% to 41%; P = .08). In all, 23 children in the DD group (79%) and 11 children in the TD group (33%) had deficits in 1 or more domain of visual function (difference, 46%; 95% CI, 23%-69%; P < .001).Conclusions and relevanceThese findings suggest that deficits in visual function are far more prevalent in school-aged children with DD than in TD readers, but the possible cause and clinical relevance of these deficits are uncertain. Further study is needed to determine the extent to which treating these deficits can improve visual symptoms and/or reading parameters.