Fructose content and composition of commercial HFCS-sweetened carbonated beverages.
Ontology highlight
ABSTRACT: OBJECTIVE: The obesigenic and related health effects of caloric sweeteners are subjects of much current research. Consumers can properly adjust their diets to conform to nutritional recommendations only if the sugars composition of foods and beverages is accurately measured and reported, a matter of recent concern. We tested the hypothesis that high-fructose corn syrup (HFCS) used in commercial carbonated beverages conforms to commonly assumed fructose percentages and industry technical specifications, and fulfills beverage product label regulations and Food Chemicals Codex-stipulated standards. DESIGN: A high-pressure liquid chromatography method was developed and verified for analysis of sugars in carbonated beverages sweetened with HFCS-55. The method was used to measure percent fructose in three carbonated beverage categories. Method verification was demonstrated by acceptable linearity (R(2)>0.99), accuracy (94-104% recovery) and precision (RSD < 2%). RESULT: Fructose comprised 55.58% of total sugars (95% confidence interval 55.51-55.65%), based on 160 total measurements by 2 independent laboratories of 80 randomly selected carbonated beverages sweetened with HFCS-55. The difference in fructose measurements between laboratories was significant but small (0.1%), and lacked relevance. Differences in fructose by product category or by product age were not statistically significant. Total sugars content of carbonated beverages showed close agreement within product categories (95% confidence interval = 0.01-0.54%). CONCLUSIONS: Using verified analytical methodology for HFCS-sweetened carbonated beverages, this study confirmed the hypothesis that fructose as a percentage of total sugars is in close agreement with published specifications in industry technical data sheets, published literature values and governmental standards and requirements. Furthermore, total sugars content of commercial beverages is consistent with common industry practices for canned and bottled products and met the US Federal requirements for nutritional labeling and nutrient claims. Prior concerns about composition were likely owing to use of improper and unverified methodology.
Project description:Fructose-, compared to glucose-, sweetened beverages increase liver triglyceride content in the short-term, prior to weight gain. In secondary analyses of a randomized cross-over design study during which 24 healthy adults consumed 25% of their estimated energy requirement in the form of glucose-, fructose-, and high-fructose corn syrup-sweetened beverages in addition to an identical ad libitum diet for three periods of 8 days each, we investigated the hypothesis that fructose in sweetened beverages also triggers insulin resistance in the short term. Total energy intake, body weight, and fasting glucose did not differ among diet phases. However, there was a significant trend for higher fasting insulin (p = 0.042 for trend) and, among normal-weight participants, homeostasis model assessment index of insulin resistance (p = 0.034 for diet × adiposity interaction) according to the glucose content of the beverages. In conclusion, in contrast to our hypothesis, insulin resistance was increased with higher glucose vs. fructose content of the beverages in this short-term trial.
Project description:Increased hepatic lipid content and decreased insulin sensitivity have critical roles in the development of cardiometabolic diseases. Therefore, our objective was to investigate the dose-response effects of consuming high fructose corn syrup (HFCS)-sweetened beverages for two weeks on hepatic lipid content and insulin sensitivity in young (18-40 years) adults (BMI 18-35 kg/m2). In a parallel, double-blinded study, participants consumed three beverages/day providing 0% (aspartame: n = 23), 10% (n = 18), 17.5% (n = 16), or 25% (n = 28) daily energy requirements from HFCS. Magnetic resonance imaging for hepatic lipid content and oral glucose tolerance tests (OGTT) were conducted during 3.5-day inpatient visits at baseline and again at the end of a 15-day intervention. During the 12 intervening outpatient days participants consumed their usual diets with their assigned beverages. Significant linear dose-response effects were observed for increases of hepatic lipid content (p = 0.015) and glucose and insulin AUCs during OGTT (both p = 0.0004), and for decreases in the Matsuda (p = 0.0087) and Predicted M (p = 0.0027) indices of insulin sensitivity. These dose-response effects strengthen the mechanistic evidence implicating consumption of HFCS-sweetened beverages as a contributor to the metabolic dysregulation that increases risk for nonalcoholic fatty liver disease and type 2 diabetes.
Project description:Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle-triglyceride and -cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults.
Project description:PurposeIt has been suggested that a high intake of sugar or sweeteners may result in an unfavorable microbiota composition; however, evidence is lacking. Hence, in this exploratory epidemiological study, we aim to examine if intake of added sugar, sugar-sweetened beverages (SSBs) or artificially sweetened beverages (ASBs) associate with the gut microbiota composition.MethodsParticipants (18-70 years) in the Malmö Offspring Study have provided blood, urine, and fecal samples and completed both web-based 4 day food records and short food frequency questionnaires. The gut microbiota was assessed by 16S rRNA sequencing, processed in QIIME and matched to Greengenes (v.13.8), giving 64 included genera after filtering. Intake of added sugar (n = 1371) (also supported by the overnight urinary sugar biomarker in a subgroup n = 577), SSBs (n = 1086) and ASBs (n = 1085) were examined as exposures in negative binomial regressions.ResultsVarious genera nominally associated with intake of added sugar, SSBs, and ASBs. Only the negative association between SSB intake and Lachnobacterium remained significant after multiple testing correction. A positive association between SSB intake and the Firmicutes:Bacteroidetes ratio was also observed.ConclusionIn this wide population, the cross-sectional associations between added sugar and sweet beverage intake and the gut microbiota are modest, but the results suggest that SSB intake is associated negatively with the genus Lachnobacterium and positively with the Firmicutes:Bacteroidetes ratio. Larger studies, preferably using metagenomic sequencing, are needed to further evaluate if a link exists between intake of sugars and sweeteners and the human gut microbiota.
Project description:BackgroundWe have reported that, compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin, and leptin concentrations and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. High-fructose corn syrup (HFCS) has replaced sucrose as the predominant sweetener in beverages in the United States.ObjectiveWe compared the metabolic/endocrine effects of HFCS with sucrose and, in a subset of subjects, with pure fructose and glucose.DesignThirty-four men and women consumed 3 isocaloric meals with either sucrose- or HFCS-sweetened beverages, and blood samples were collected over 24 h. Eight of the male subjects were also studied when fructose- or glucose-sweetened beverages were consumed.ResultsIn 34 subjects, 24-h glucose, insulin, leptin, ghrelin, and TG profiles were similar between days that sucrose or HFCS was consumed. Postprandial TG excursions after HFCS or sucrose were larger in men than in women. In the men in whom the effects of 4 sweeteners were compared, the 24-h glucose and insulin responses induced by HFCS and sucrose were intermediate between the lower responses during consumption of fructose and the higher responses during glucose. Unexpectedly, postprandial TG profiles after HFCS or sucrose were not intermediate but comparably high as after pure fructose.ConclusionsSucrose and HFCS do not have substantially different short-term endocrine/metabolic effects. In male subjects, short-term consumption of sucrose and HFCS resulted in postprandial TG responses comparable to those induced by fructose.
Project description:BackgroundWhether consumption of sugar-sweetened beverages (SSBs) or artificially sweetened beverages (ASBs) is associated with the risk of breast cancer is of public health interest.ObjectivesWe sought to evaluate associations between consumption of SSBs and ASBs and risks of total and subtype-specific breast cancer.MethodsWe followed 82,713 women from the Nurses' Health Study (1980 to 2016) and 93,085 women from the Nurses' Health Study II (1991 to 2017). Cumulatively averaged intakes of SSBs and ASBs from FFQs were tested for associations with incident breast cancer cases and subtypes using Cox regression models. We also evaluated the associations stratified by menopausal status, physical activity, BMI, and alcohol intake.ResultsWe documented 11,379 breast cancer cases during 4,655,153 person-years of follow-up. Consumption of SSBs or ASBs was not associated with total breast cancer risk: pooled HRs comparing extreme categories (≥1/day compared with <1/month) were 1.03 (95% CI, 0.95-1.12) and 0.96 (95% CI, 0.91-1.02), respectively. We observed a suggestive interaction by BMI using pooled data (P-interaction = 0.08), where a modestly higher risk of breast cancer with each serving per day increment of SSBs was found in lean women (HR, 1.06; 95% CI, 1.01-1.11) but not among overweight or obese women (HR, 1.00; 95% CI, 0.95-1.06). Moreover, in the pooled, fully adjusted analysis, compared to infrequent consumers (<1/month), those who consumed ≥1 serving of ASBs per day had a lower risk of luminal A breast tumors (HR, 0.90; 95% CI, 0.80-1.01; P-trend = 0.02).ConclusionsAlthough no significant associations were observed overall, consumption of SSBs was associated with a slightly higher risk of breast cancer among lean women. This finding could have occurred by chance and needs confirmation. Our findings also suggest no substantial increase in the risk of breast cancer with consumption of ASBs.
Project description:This study investigates the associations between recent consumption of fast foods, sugar-sweetened beverages, and artificially-sweetened beverages on level of allostatic load, a measure of cumulative biological risk, in young adults in the US. Data from Wave IV of the National Longitudinal Study of Adolescent to Adult Health were analyzed. Negative binomial regression models were used to estimate the associations between consumption of fast foods, sugar-sweetened, and artificially-sweetened beverages and allostatic load. Poisson and logistic regression models were used to estimate the associations between these diet parameters and combined biomarkers of physiological subsystems that comprise our measure of allostatic load. All analyses were weighted and findings are representative of young adults in the US, ages 24-34 in 2008 (n = 11,562). Consumption of fast foods, sugar-sweetened, and artificially-sweetened beverages were associated with higher allostatic load at a bivariate level. Accounting for demographics and medication use, only artificially-sweetened beverages remained significantly associated with allostatic load. When all three dietary components were simultaneously included in a model, both sugar- and artificially-sweetened beverage consumption were associated with higher allostatic load. Differences in allostatic load emerge early in the life course and young adults consuming sugar- or artificially-sweetened beverages have higher allostatic load, net of demographics and medication use. Public health messages to young adults may need to include cautions about both sugar- and artificially-sweetened beverages.
Project description:(1) Background: Clinical results on the effects of excess sugar consumption on insulin sensitivity are conflicting, possibly due to differences in sugar type and the insulin sensitivity index (ISI) assessed. Therefore, we compared the effects of consuming four different sugars on insulin sensitivity indices derived from oral glucose tolerance tests (OGTT). (2) Methods: Young adults consumed fructose-, glucose-, high-fructose corn syrup (HFCS)-, sucrose-, or aspartame-sweetened beverages (SB) for 2 weeks. Participants underwent OGTT before and at the end of the intervention. Fasting glucose and insulin, Homeostatic Model Assessment-Insulin Resistance (HOMA-IR), glucose and insulin area under the curve, Surrogate Hepatic Insulin Resistance Index, Matsuda ISI, Predicted M ISI, and Stumvoll Index were assessed. Outcomes were analyzed to determine: (1) effects of the five SB; (2) effects of the proportions of fructose and glucose in all SB. (3) Results: Fructose-SB and the fructose component in mixed sugars negatively affected outcomes that assess hepatic insulin sensitivity, while glucose did not. The effects of glucose-SB and the glucose component in mixed sugar on muscle insulin sensitivity were more negative than those of fructose. (4) Conclusion: the effects of consuming sugar-SB on insulin sensitivity varied depending on type of sugar and ISI index because outcomes assessing hepatic insulin sensitivity were negatively affected by fructose, and outcomes assessing muscle insulin sensitivity were more negatively affected by glucose.
Project description:BackgroundAdolescents consume more sugar-sweetened beverages than do individuals in any other age group, but it is unknown how the type of sugar-sweetened beverage affects metabolic health in this population.ObjectiveThe objective was to compare the metabolic health effects of short-term (2-wk) consumption of high-fructose (HF) and high-glucose (HG)-sweetened beverages in adolescents (15-20 y of age).DesignIn a counterbalanced, single-blind fashion, 40 male and female adolescents completed two 2-wk trials that included 1) an HF trial in which they consumed 710 mL of a sugar-sweetened beverage/d (equivalent to 50 g fructose/d and 15 g glucose/d) for 2 wk and 2) an HG trial in which they consumed 710 mL of a sugar-sweetened beverage/d (equivalent to 50 g glucose/d and 15 g fructose/d) for 2 wk in addition to their normal ad libitum diet. In addition, the participants maintained similar physical activity levels during each trial. The day after each trial, insulin sensitivity and resistance [assessed via Quantitative Insulin Sensitivity Check Index (QUICKI) and homeostatic model assessment of insulin resistance (HOMA-IR) index] and fasting and postprandial glucose, lactate, lipid, cholesterol, insulin, C-peptide, insulin secretion, and clearance responses to HF or HG mixed meals were assessed.ResultsBody weight, QUICKI (whole-body insulin sensitivity), HOMA-IR (hepatic insulin resistance), and fasting lipids, cholesterol, glucose, lactate, and insulin secretion or clearance were not different between trials. Fasting HDL- and HDL₃-cholesterol concentrations were ∼10-31% greater (P < 0.05) in female adolescents than in male adolescents. Postprandial triacylglycerol, HDL-cholesterol, HDL₃-cholesterol, and glucose concentrations were not different between HF and HG trials. The lactate incremental area under the curve was ∼3.7-fold greater during the HF trial (P < 0.05), whereas insulin secretion was 19% greater during the HG trial (P < 0.05).ConclusionsModerate amounts of HF- or HG-sweetened beverages for 2 wk did not have differential effects on fasting or postprandial cholesterol, triacylglycerol, glucose, or hepatic insulin clearance in weight-stable, physically active adolescents.
Project description:PurposeWe aimed to investigate whether parental and siblings' sugar-sweetened beverage (SSB) intake had prospective impact on children's SSB consumption, and the potential sex difference in these associations.MethodsThis study included a total of 904 children and their parents enrolled from 2004 to 2011 China Health and Nutrition Survey (CHNS) cohort study. SSB consumption information was estimated using a short dietary questionnaire and total energy intake was assessed with three-day 24-h dietary assessments at recruitment and follow-up surveys. Multivariate logistic or linear regression analyses were used to assess the association for SSB consumption between parents, siblings and children after adjusting for age, body mass index (BMI) z-score, household income and parental educational level.ResultsIn this study, a majority (87.6%) of children consumed SSB. Among them, the median consumption of SSB was 70.3 ml/day per capita and 205.4 ml/day per consumer. Parental SSB consumption was relevant to children's SSB consumption, and this association was more pronounced in boys than in girls. Meanwhile, fathers seemed to have a stronger impact on whether children consume SSB than mothers which was reflected by lower P and higher OR. Additionally, children's SSB intake was prospectively associated with their older siblings' SSB consumption (P for trend < 0.03).ConclusionsParental and older siblings' SSB consumption was relevant to children's SSB intake. Particularly, boys were more susceptible to parental impact than girls, and fathers seemed to have a greater influence on children than mothers.