Unknown

Dataset Information

0

Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum.


ABSTRACT: Decomposition of organic matter (OM) in soil, affecting carbon (C) cycling and climate feedbacks, depends on microbial activities driven by C and nitrogen (N) availability. However, it remains unknown how decomposition of various OMs vary across global supplies and ratios of C and N inputs. We examined OM decomposition by incubating four types of OM (leaf litter, wood, organic matter from organic and mineral horizons) from a decay continuum in a subtropical forest at Ailao Mountain, China with labile C and N additions. Decomposition of wood with high C:N decreased for 3.9 to 29% with these additions, while leaf decomposition was accelerated only within a narrow C:N range of added C and N. Decomposition of OM from organic horizon was accelerated by high C:N and suppressed by low C:N, but mineral soil was almost entirely controlled by high C:N. These divergent responses to C and N inputs show that mechanisms for priming (i.e. acceleration or retardation of OM decomposition by labile inputs) vary along this decay continuum. We conclude that besides C:N ratios of OM, those of labile inputs control the OM decay in the litter horizons, while energy (labile C) regulates decomposition in mineral soil. This suggests that OM decomposition can be predicted from its intrinsic C:N ratios and those of labile inputs.

SUBMITTER: Qiao N 

PROVIDER: S-EPMC4726261 | biostudies-other | 2016

REPOSITORIES: biostudies-other

altmetric image

Publications

Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum.

Qiao Na N   Xu Xingliang X   Hu Yuehua Y   Blagodatskaya Evgenia E   Liu Yongwen Y   Schaefer Douglas D   Kuzyakov Yakov Y  

Scientific reports 20160125


Decomposition of organic matter (OM) in soil, affecting carbon (C) cycling and climate feedbacks, depends on microbial activities driven by C and nitrogen (N) availability. However, it remains unknown how decomposition of various OMs vary across global supplies and ratios of C and N inputs. We examined OM decomposition by incubating four types of OM (leaf litter, wood, organic matter from organic and mineral horizons) from a decay continuum in a subtropical forest at Ailao Mountain, China with l  ...[more]

Similar Datasets

| PRJEB42326 | ENA
| S-EPMC7385255 | biostudies-literature
| S-EPMC6484365 | biostudies-literature
2018-11-30 | GSE110485 | GEO
| S-EPMC5515921 | biostudies-literature
| S-EPMC7171705 | biostudies-literature
2015-01-30 | GSE65430 | GEO
2022-11-03 | GSE208302 | GEO
| S-EPMC3695930 | biostudies-literature