Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity.
Ontology highlight
ABSTRACT: Hyperentanglement, the entanglement in several degrees of freedom (DOFs) of a quantum system, has attracted much attention as it can be used to increase both the channel capacity of quantum communication and its security largely. Here, we present the first scheme to completely distinguish the hyperentangled Bell states of two-photon systems in three DOFs with the help of cross-Kerr nonlinearity without destruction, including two longitudinal momentum DOFs and the polarization DOF. We use cross-Kerr nonlinearity to construct quantum nondemolition detectors which can be used to make a parity-check measurement and analyze Bell states of two-photon systems in different DOFs. Our complete scheme for two-photon six-qubit hyperentangled Bell-state analysis may be useful for the practical applications in quantum information, especially in long-distance high-capacity quantum communication.
Project description:Improving the precision of measurements is a significant scientific challenge. Previous works suggest that in a photon-coupling scenario the quantum fisher information shows a quantum-enhanced scaling of N2, which in theory allows a better-than-classical scaling in practical measurements. In this work, utilizing mixed states with a large uncertainty and a post-selection of an additional pure system, we present a scheme to extract this amount of quantum fisher information and experimentally attain a practical Heisenberg scaling. We performed a measurement of a single-photon's Kerr non-linearity with a Heisenberg scaling, where an ultra-small Kerr phase of ≃6 × 10-8 rad was observed with a precision of ≃3.6 × 10-10 rad. From the use of mixed states, the upper bound of quantum fisher information is improved to 2N2. Moreover, by using an imaginary weak-value the scheme is robust to noise originating from the self-phase modulation.
Project description:Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding.
Project description:We present a scheme to encode quantum information (single logical qubit information) into three-photon decoherence-free states, which can conserve quantum information from collective decoherence, via nonlinearly optical gates (using cross-Kerr nonlinearities: XKNLs) and linearly optical devices. For the preparation of the decoherence-free state, the nonlinearly optical gates (multi-photon gates) consist of weak XKNLs, quantum bus (qubus) beams, and photon-number-resolving (PNR) measurement. Then, by using a linearly optical device, quantum information can be encoded on three-photon decoherence-free state prepared. Subsequently, by our analysis, we show that the nonlinearly optical gates using XKNLs, qubus beams, and PNR measurement are robust against the decoherence effect (photon loss and dephasing) in optical fibers. Consequently, our scheme can be experimentally implemented to efficiently generate three-photon decoherence-free state encoded quantum information, in practice.
Project description:Single photon nonlinearities based on a semiconductor quantum dot in an optical microcavity are a promising candidate for integrated optical quantum information processing nodes. In practice, however, the finite quantum dot lifetime and cavity-quantum dot coupling lead to reduced fidelity. Here we show that, with a nearly polarization degenerate microcavity in the weak coupling regime, polarization pre- and postselection can be used to restore high fidelity. The two orthogonally polarized transmission amplitudes interfere at the output polarizer; for special polarization angles, which depend only on the device cooperativity, this enables cancellation of light that did not interact with the quantum dot. With this, we can transform incident coherent light into a stream of strongly correlated photons with a second-order correlation value up to 40, larger than previous experimental results, even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates.
Project description:Graphene's giant nonlinear optical response along with its integrability has made it a vaunted material for on-chip photonics. Despite a multitude of studies confirming its strong nonlinearity, there is a lack of reports examining the fundamental processes that govern the response. Addressing this gap in knowledge we analyse the role of experimental parameters by systematically measuring the near-infrared spectral dependence, the sub-picosecond temporal evolution and pulse-width dependence of the effective Kerr coefficient (n2,eff) of graphene in hundreds of femtosecond regime. The spectral dependence measured using the Z-scan technique is corroborated by a density matrix quantum theory formulation to extract a n2,eff ∝ λ2 dependence. The temporal evolution obtained using the time-resolved Z-scan measurement shows the nonlinearity peaking at zero delay time and relaxing on a time-scale of carrier relaxation. The dependence of the n2,eff on pulse duration is obtained by expanding the input pulse using a prism-pair set-up. Our results provide an avenue for controllable tunability of the nonlinear response in graphene, which is limited in silicon photonics.
Project description:It has been shown that there are not only transverse but also longitudinal couplings between microwave fields and a superconducting qubit with broken inversion symmetry of the potential energy. Using multiphoton processes induced by longitudinal coupling fields and frequency matching conditions, we design a universal algorithm to produce arbitrary superpositions of two-mode photon states of microwave fields in two separated transmission line resonators, which are coupled to a superconducting qubit. Based on our algorithm, we analyze the generation of evenly-populated states and NOON states. Compared to other proposals with only single-photon process, we provide an efficient way to produce entangled microwave photon states when the interactions between superconducting qubits and microwave fields are in the strong and ultrastrong regime.
Project description:Artificial molecules containing just one or two electrons provide a powerful platform for studies of orbital and spin quantum dynamics in nanoscale devices. A well-known example of these dynamics is tunnelling of electrons between two coupled quantum dots triggered by microwave irradiation. So far, these tunnelling processes have been treated as electric-dipole-allowed spin-conserving events. Here we report that microwaves can also excite tunnelling transitions between states with different spin. We show that the dominant mechanism responsible for violation of spin conservation is the spin-orbit interaction. These transitions make it possible to perform detailed microwave spectroscopy of the molecular spin states of an artificial hydrogen molecule and open up the possibility of realizing full quantum control of a two-spin system through microwave excitation.
Project description:Spin qubits and superconducting qubits are among the promising candidates for realizing a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either approach, a coherent link is necessary that integrates and controllably couples both qubit types on the same chip over a distance that is several orders of magnitude longer than the physical size of the spin qubit. We realize such a link with a frequency-tunable high impedance SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting qubits on the same chip. We spectroscopically observe coherent interaction between the resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the interaction is mediated either by real or virtual resonator photons.
Project description:We investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering party. In the simplest nontrivial scenario of two projective measurements, we solve this problem completely by virtue of the connection between the steering problem and the joint-measurement problem. A necessary and sufficient criterion is derived together with a simple geometrical interpretation. Our study shows that a Bell-diagonal state is steerable by two projective measurements iff it violates the Clauser-Horne-Shimony-Holt (CHSH) inequality, in sharp contrast with the strict hierarchy expected between steering and Bell nonlocality. We also introduce a steering measure and clarify its connections with concurrence and the volume of the steering ellipsoid. In particular, we determine the maximal concurrence and ellipsoid volume of Bell-diagonal states that are not steerable by two projective measurements. Finally, we explore the steerability of Bell-diagonal states under three projective measurements. A simple sufficient criterion is derived, which can detect the steerability of many states that are not steerable by two projective measurements. Our study offers valuable insight on steering of Bell-diagonal states as well as the connections between entanglement, steering, and Bell nonlocality.
Project description:Deterministic photon sources allow long-term advancements in quantum optics. A single quantum emitter embedded in a photonic resonator or waveguide may be triggered to emit one photon at a time into a desired optical mode. By coherently controlling a single spin in the emitter, multi-photon entanglement can be realized. We demonstrate a deterministic source of three-qubit entanglement based on a single electron spin trapped in a quantum dot embedded in a planar nanophotonic waveguide. We implement nuclear spin narrowing to increase the spin dephasing time to T2*≃33 ns, which enables high-fidelity coherent optical spin rotations, and realize a spin-echo pulse sequence for sequential generation of spin-photon and spin-photon-photon entanglement. The emitted photons are highly indistinguishable, which is a key requirement for scalability and enables subsequent photon fusions to realize larger entangled states. This work presents a scalable deterministic source of multi-photon entanglement with a clear pathway for further improvements, offering promising applications in photonic quantum computing or quantum networks.