Quantum Router for Single Photons Carrying Spin and Orbital Angular Momentum.
Ontology highlight
ABSTRACT: Quantum router is an essential element in the quantum network. Here, we present a fully quantum router based on interaction free measurement and quantum dots. The signal photonic qubit can be routed to different output ports according to one control electronic qubit. Besides, our scheme is an interferometric method capable of routing single photons carrying either spin angular momentum (SAM) or orbital angular momentum (OAM), or simultaneously carrying SAM and OAM. Then we describe a cascaded multi-level quantum router to construct a one-to-many quantum router. Subsequently we analyze the success probability by using a tunable controlled phase gate. The implementation issues are also discussed to show that this scheme is feasible.
Project description:Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrarily tunable OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrarily tunable OAM we presented has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrarily tunable OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM.
Project description:We study the nonlinear interaction between two non-collinear light beams that carry orbital angular momentum (OAM). More specifically, two incident beams interact at an angle in a medium with a second order nonlinearity and thus generate a third, non-collinear beam at the second harmonic frequency that experiences a reduced conversion efficiency in comparison to that expected based on conventional phase-matching theory. This reduction scales with the input beam OAM and, differently from previous spiral bandwidth calculations, is due to a geometric effect whereby the input OAM is projected along the non-collinear interaction direction. The effect is relevant even at small interaction angles and is further complicated at large angles by a non-conservation of the total OAM in the nonlinear interaction. Experiments are performed under different conditions and are in excellent agreement with the theory. Our results have implications beyond the specific case studied here of second-harmonic generation, in particular for parametric down-conversion of photons or in general for phase-matched non-collinear interactions between beams with different OAM.
Project description:Low-energy eigenmode excitations of ferromagnets are spin waves or magnons that can be triggered and guided in magnonic circuits without Ohmic losses and hence are attractive for communicating and processing information. Here we present new types of spin waves that carry a definite and electrically controllable orbital angular momentum (OAM) constituting twisted magnon beams. We show how twisted beams emerge in magnonic waveguides and how to topologically quantify and steer them. A key finding is that the topological charge associated with OAM of a particular beam is tunable externally and protected against magnetic damping. Coupling to an applied electric field via the Aharanov-Casher effect allows for varying the topological charge. This renders possible OAM-based robust, low-energy consuming multiplex magnonic computing, analogously to using photonic OAM in optical communications, and high OAM-based entanglement studies, but here at shorter wavelengths, lower energy consumption, and ready integration in magnonic circuits.
Project description:Light-carrying orbital angular momentum (OAM) has great potential in enhancing the information channel capacity in both classical and quantum optical communications. Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows, but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths, so a quantum interface to bridge the wavelength gap is necessary. So far, such an interface for OAM-carried light has not been realized yet. Here, we report the first experimental realization of a quantum interface for a heralded single photon carrying OAM using a nonlinear crystal in an optical cavity. The spatial structures of input and output photons exhibit strong similarity. More importantly, single-photon coherence is preserved during up-conversion as demonstrated.
Project description:An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.
Project description:Quantum teleportation is one of the most essential protocol in quantum information. In addition to increasing the scale of teleportation distance, improving its information transmission capacity is also vital importance for its practical applications. Recently, the orbital angular momentum (OAM) of light has attracted wide attention as an important degree of freedom for realizing multiplexing to increase information transmission capacity. Here we show that by utilizing the OAM multiplexed continuous variable entanglement, 9 OAM multiplexed channels of parallel all-optical quantum teleportation can be deterministically established in experiment. More importantly, our parallel all-optical quantum teleportation scheme can teleport OAM-superposition-mode coded coherent state, which demonstrates the teleportation of more than one optical mode with fidelity beating the classical limit and thus ensures the increase of information transmission capacity. Our results open the avenue for deterministically implementing parallel quantum communication protocols and provide a promising paradigm for constructing high-capacity all-optical quantum communication networks.
Project description:Light beams with helical phase-fronts are known to carry orbital angular momentum (OAM) and provide an additional degree of freedom to beams of coherent light. While OAM beams can be readily derived from Gaussian laser beams with phase plates or gratings, this is far more challenging in the extreme ultra-violet (XUV), especially for the case of high XUV intensity. Here, we theoretically and numerically demonstrate that intense surface harmonics carrying OAM are naturally produced by the intrinsic dynamics of a relativistically intense circularly-polarized Gaussian beam (i.e. non-vortex) interacting with a target at normal incidence. Relativistic surface oscillations convert the laser pulses to intense XUV harmonic radiation via the well-known relativistic oscillating mirror mechanism. We show that the azimuthal and radial dependence of the harmonic generation process converts the spin angular momentum of the laser beam to orbital angular momentum resulting in an intense attosecond pulse (or pulse train) with OAM.
Project description:Single-particle tracking (SPT) is an immensely valuable technique for studying a variety of processes in the life sciences and physics. It can help researchers better understand the positions, paths, and interactions of single objects in systems that are highly dynamic or require imaging over an extended time. Here, we propose an all-dielectric one-dimensional photonic crystal (1D PC) that enhances spin-to-orbital angular momentum conversion for three-dimensional (3D) SPTs. This well-designed 1D PC can work as a substrate for optical microscopy. We introduce this effect into the interferometric scattering (iSCAT) technique, resulting in a double-helix point spread function (DH-PSF). DH-PSF provides more uniform Fisher information for 3D position estimation than the PSFs of conventional microscopy, such as encoding the axial position of a single particle in the angular orientation of DH-PSF lobes, thus providing a means for 3D SPT. This approach can address the challenge of iSCAT in 3D SPT because DH-PSF iSCAT will not experience multiple contrast inversions when a single particle travels along the axial direction. DH-PSF iSCAT microscopy was used to record the 3D trajectory of a single microbead attached to the flagellum, facilitating precise analysis of fluctuations in motor dynamics. Its ability to track single nanoparticles, such as 3D diffusion trajectories of 20 nm gold nanoparticles in glycerol solution, was also demonstrated. The DH-PSF iSCAT technique enabled by a 1D PC holds potential promise for future applications in physical, biological, and chemical science.
Project description:The present study investigated the difference in transmittance of light carrying opposite spin angular momentum (SAM) and orbital angular momentum (OAM) through chlorella algal fluid with varying concentrations and thicknesses. Our results indicate that, under specific conditions, right-handed light sources exhibit higher transmittance in the algal fluid compared to left-handed light sources. Furthermore, we observed that light with OAM also demonstrated higher transmittance than other types of light sources, leading to faster cell density growth of Chlorella. Interestingly, we also discovered that light with OAM stimulates Chlorella to synthesize more proteins. These findings provide different insights for selecting appropriate light sources for large-scale algae cultivation, and may facilitate the realization of carbon peaking and carbon neutrality in the future.
Project description:Solving the electronic structure problem is a notorious challenge in quantum chemistry and material science. Variational quantum eigensolver (VQE) is a promising hybrid classical-quantum algorithm for finding the lowest-energy configuration of a molecular system. However, it typically requires many qubits and quantum gates with substantial quantum circuit depth to accurately represent the electronic wave function of complex structures. Here, we propose an alternative approach to solve the electronic structure problem using VQE with a single qudit. Our approach exploits a high-dimensional orbital angular momentum state of a heralded single photon and notably reduces the required quantum resources compared to conventional multi-qubit-based VQE. We experimentally demonstrate that our single-qudit-based VQE can efficiently estimate the ground state energy of hydrogen (H2) and lithium hydride (LiH) molecular systems corresponding to two- and four-qubit systems, respectively. We believe that our scheme opens a pathway to perform a large-scale quantum simulation for solving more complex problems in quantum chemistry and material science.