ABSTRACT: CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra - silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 μm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W(-1)/m) and anomalous dispersion at 1.55 μm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two - fold self phase modulation induced spectral broadening is observed using waveguides only 430 μm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms.
Project description:Difference-frequency generation (DFG) is elemental for nonlinear parametric processes such as optical parametric oscillation and is instrumental for generating coherent light at long wavelengths, especially in the middle infrared. Second-order nonlinear frequency conversion processes like DFG require a second-order susceptibility χ (2), which is absent in centrosymmetric materials, e.g. silicon-based platforms. All-optical poling is a versatile method for inducing an effective χ (2) in centrosymmetric materials through periodic self-organization of charges. Such all-optically inscribed grating can compensate for the absence of the inherent second-order nonlinearity in integrated photonics platforms. Relying on this induced effective χ (2) in stoichiometric silicon nitride (Si3N4) waveguides, second-order nonlinear frequency conversion processes, such as second-harmonic generation, were previously demonstrated. However up to now, DFG remained out of reach. Here, we report both near- and non-degenerate DFG in all-optically poled Si3N4 waveguides. Exploiting dispersion engineering, particularly rethinking how dispersion can be leveraged to satisfy multiple processes simultaneously, we unlock nonlinear frequency conversion near 2 μm relying on all-optical poling at telecommunication wavelengths. The experimental results are in excellent agreement with theoretically predicted behaviours, validating our approach and opening the way for the design of new types of integrated sources in silicon photonics.
Project description:Colloidal quantum dots (QDs) have become a versatile optoelectronic material for emitting and detecting light that can overcome the limitations of a range of electronic and photonic technology platforms. Photonic integrated circuits (PICs), for example, face the persistent challenge of combining active materials with passive circuitry ideally suited for guiding light. Here, we demonstrate the integration of photodiodes (PDs) based on PbS QDs on silicon nitride waveguides (WG). Analyzing planar QDPDs first, we argue that the main limitation WG-coupled QDPDs face is detector saturation induced by the high optical power density of the guided light. Using the cladding thickness and waveguide width as design parameters, we mitigate this issue, and we demonstrate WG-QDPDs with an external quantum efficiency of 67.5% at 1275 nm that exhibit a linear photoresponse for input powers up to 400 nW. In the next step, we demonstrate a compact infrared spectrometer by integrating these WG-QDPDs on the output channels of an arrayed waveguide grating demultiplexer. This work provides a path toward a low-cost PD solution for PICs, which are attractive for large-scale production.
Project description:Stoichiometric silicon nitride (Si3N4) is one of the most mature integrated photonic platforms for linear and nonlinear optical applications on-chip. However, because it is a centrosymmetric material, second-order nonlinear processes are inherently not available in Si3N4, limiting its use for multiple classical and quantum applications. In this work, we implement thermally assisted electric-field poling, which allows charge carrier separation in the waveguide core, leading to a depletion zone formation and the inscription of a strong electric field reaching 20 V/μm. The latter results in an effective second-order susceptibility (χ(2)) inside the Si3N4 waveguide, making linear electro-optic modulation accessible on the platform for the first time. We develop a numerical model for simulating the poling process inside the waveguide and use it to calculate the diffusion coefficient and the concentration of the charge carriers responsible for the field formation. The charge carrier concentration, as well as the waveguide core size, is found to play a significant role in determining the achievable effective nonlinearity experienced by the optical mode inside the waveguide. Current findings establish a strong groundwork for further advancement of χ(2)-based devices on Si3N4.
Project description:Silicon nitride has emerged as a prominent platform for building photonics integrated circuits. While its nonlinear properties based on third-order effects have been successfully exploited, an efficient second harmonic generation in standard stoichiometric silicon nitride (Si3N4) waveguides can also be achieved after all-optical poling, as was recently shown. The root of such a phenomenon has been attributed to the inscription of a self-organized periodic space-charge grating along the waveguide, allowing an effective χ(2) and automatic quasi-phase-matching of pump and second harmonic. However, the different parameters and their role in increasing the efficiency of the process are still not fully comprehended. In this work, we use optical means to identify the general conditions of mode matching occurring during all-optical poling. The overlap integral between pump and second harmonic optical modes is shown to be the governing parameter in determining the features of the χ(2) gratings. Two-photon microscopy measurements of the χ(2) gratings reveal the presence of a secondary periodicity in some of the waveguides used in the study. According to overlap integral simulations, such an effect can occur due to mode mixing in the waveguide bends. From a study of poling dynamics, we observe that poling efficiency and rate increase as a function of optical pump power and waveguide length. However, in order to initiate poling, a critical pump intensity, which is lower for longer waveguides, must be coupled into a waveguide. Temporal and thermal stability tests reveal the nature of charge traps responsible for grating inscription. After applying thermally activated hopping as a conductivity mechanism in our samples, we show that only shallow traps seem to be activated during the all-optical poling process.
Project description:Optimal optogenetic perturbation of brain circuit activity often requires light delivery in a precise spatial pattern that cannot be achieved with conventional optical fibers. We demonstrate an implantable silicon-based probe with a compact light delivery system, consisting of silicon nitride waveguides and grating couplers for out-of-plane light emission with high spatial resolution. 473 nm light is coupled into and guided in cm-long waveguide and emitted at the output grating coupler. Using the direct cut-back and out-scattering measurement techniques, the propagation optical loss of the waveguide is measured to be below 3 dB/cm. The grating couplers provide collimated light emission with sufficient irradiance for neural stimulation. Finally, a probe with multisite light delivery with three output grating emitters from a single laser input is demonstrated.
Project description:Heterogeneous and monolithic integration of the versatile low-loss silicon nitride platform with low-temperature materials such as silicon electronics and photonics, III-V compound semiconductors, lithium niobate, organics, and glasses has been inhibited by the need for high-temperature annealing as well as the need for different process flows for thin and thick waveguides. New techniques are needed to maintain the state-of-the-art losses, nonlinear properties, and CMOS-compatible processes while enabling this next generation of 3D silicon nitride integration. We report a significant advance in silicon nitride integrated photonics, demonstrating the lowest losses to date for an anneal-free process at a maximum temperature 250 °C, with the same deuterated silane based fabrication flow, for nitride and oxide, for an order of magnitude range in nitride thickness without requiring stress mitigation or polishing. We report record low anneal-free losses for both nitride core and oxide cladding, enabling 1.77 dB m-1 loss and 14.9 million Q for 80 nm nitride core waveguides, more than half an order magnitude lower loss than previously reported sub 300 °C process. For 800 nm-thick nitride, we achieve as good as 8.66 dB m-1 loss and 4.03 million Q, the highest reported Q for a low temperature processed resonator with equivalent device area, with a median of loss and Q of 13.9 dB m-1 and 2.59 million each respectively. We demonstrate laser stabilization with over 4 orders of magnitude frequency noise reduction using a thin nitride reference cavity, and using a thick nitride micro-resonator we demonstrate OPO, over two octave supercontinuum generation, and four-wave mixing and parametric gain with the lowest reported optical parametric oscillation threshold per unit resonator length. These results represent a significant step towards a uniform ultra-low loss silicon nitride homogeneous and heterogeneous platform for both thin and thick waveguides capable of linear and nonlinear photonic circuits and integration with low-temperature materials and processes.
Project description:The ability to spectrally translate lightwave signals in a compact, low-power platform is at the heart of the promise of nonlinear nanophotonic technologies. For example, a device to link the telecommunications band with visible and short near-infrared wavelengths can enable a connection between high-performance chip-integrated lasers based on scalable nanofabrication technology with atomic systems used for time and frequency metrology. While second-order nonlinear (χ(2)) systems are the natural approach for bridging such large spectral gaps, here we show that third-order nonlinear (χ(3)) systems, despite their typically much weaker nonlinear response, can realize spectral translation with unprecedented performance. By combining resonant enhancement with nanophotonic mode engineering in a silicon nitride microring resonator, we demonstrate efficient spectral translation of a continuous-wave signal from the telecom band (≈ 1550 nm) to the visible band (≈ 650 nm) through cavity-enhanced four-wave mixing. We achieve such translation over a wide spectral range >250 THz with a translation efficiency of (30.1 ± 2.8) % and using an ultra-low pump power of (329 ± 13) μW. The translation efficiency projects to (274 ± 28) % at 1 mW and is more than an order of magnitude larger than what has been achieved in current nanophotonic devices.
Project description:We report the femtosecond laser propagation in a hybrid graphene/silicon ridge waveguide with demonstration of the ultra-large Kerr coefficient of graphene. We also fabricated a slot-like graphene/silicon ridge waveguide which can enhance its effective Kerr coefficient 1.5 times compared with the graphene/silicon ridge waveguide. Both transverse-electric-like (TE-like) mode and transverse-magnetic-like (TM-like) mode are experimentally measured and numerically analyzed. The results show nonlinearity dependence on mode polarization not in graphene/silicon ridge waveguide but in slot-like graphene/silicon ridge waveguide. Great spectral broadening was observed due to self-phase modulation (SPM) after propagation in the hybrid waveguide with length of 2 mm. Power dependence property of the slot-like hybrid waveguide is also measured and numerically analyzed. The results also confirm the effective Kerr coefficient estimation of the hybrid structures. Spectral blue shift of the output pulse was observed in the slot-like graphene/silicon ridge waveguide. One possible explanation is that the blue shift was caused by the ultra-fast free carrier effect with the optical absorption of the doped graphene. This interesting effect can be used for soliton compression in femtosecond region. We also discussed the broadband anomalous dispersion of the Kerr coefficient of graphene.
Project description:Microwave absorbers have been used to mitigate signal interference, and to shield electromagnetic systems. Two different types of absorbers have been presented: (a) low-cost narrowband absorbers that are simple to manufacture, and (b) expensive wideband microwave absorbers that are based on complex designs. In fact, as designers try to increase the bandwidth of absorbers, they typically increase their complexity with the introduction of several electromagnetic components (e.g., introduction of multi-layer designs, introduction of multiple electromagnetic resonators, etc.,), thereby increasing their fabrication cost. Therefore, it has been a challenge to design wideband absorbers with low cost of fabrication. To address this challenge, we propose a novel design approach that combines origami math with electromagnetics to develop a simple to manufacture ultra-wideband absorber with minimal fabrication and assembly cost. Specifically, we utilize a Tachi-Miura origami pattern in a honeycomb configuration to create the first absorber that can maintain an absorptivity above 90% in a 24.6:1 bandwidth. To explain the ultra-wideband behavior of our absorber, we develop analytical models based on the transmission-reflection theory of electromagnetic waves through a series of inhomogeneous media. The ultra-wideband performance of our absorber is validated and characterized using simulations and measurements.
Project description:Silicon photonics enables large-scale photonic-electronic integration by leveraging highly developed fabrication processes from the microelectronics industry. However, while a rich portfolio of devices has already been demonstrated on the silicon platform, on-chip light sources still remain a key challenge since the indirect bandgap of the material inhibits efficient photon emission and thus impedes lasing. Here we demonstrate a class of infrared lasers that can be fabricated on the silicon-on-insulator (SOI) integration platform. The lasers are based on the silicon-organic hybrid (SOH) integration concept and combine nanophotonic SOI waveguides with dye-doped organic cladding materials that provide optical gain. We demonstrate pulsed room-temperature lasing with on-chip peak output powers of up to 1.1 W at a wavelength of 1,310 nm. The SOH approach enables efficient mass-production of silicon photonic light sources emitting in the near infrared and offers the possibility of tuning the emission wavelength over a wide range by proper choice of dye materials and resonator geometry.