Experimental Study on Cementitious Composites Embedded with Organic Microcapsules.
Ontology highlight
ABSTRACT: The recovery behavior for strength and impermeability of cementitious composites embedded with organic microcapsules was investigated in this study. Mortar specimens were formed by mixing the organic microcapsules and a catalyst with cement and sand. The mechanical behaviors of flexural and compression strength were tested. The results showed that strength could increase by up to nine percent with the addition of a small amount of microcapsules and then decrease with an increasing amount of microcapsules. An orthogonal test for investigating the strength recovery rate was designed and implemented for bending and compression using the factors of water/cement ratio, amount of microcapsules, and preloading rate. It is shown that the amount of microcapsules plays a key role in the strength recovery rate. Chloride ion permeability tests were also carried out to investigate the recovery rate and healing effect. The initial damage was obtained by subjecting the specimens to compression. Both the recovery rate and the healing effect were nearly proportional to the amount of microcapsules. The obtained cementitious composites can be seen as self-healing owing to their recovery behavior for both strength and permeability.
Project description:Encapsulation of healing agents embedded in a material matrix has become one of the major approaches for achieving self-healing function in cementitious materials in recent years. A novel type of microcapsules based self-healing cementitious composite was developed in Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University. In this study, both macro performance and the microstructure of the composite are investigated. The macro performance was evaluated by employing the compressive strength and the dynamic modulus, whereas the microstructure was represented by the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter, which are significantly correlated to the pore-size distribution and the compressive strength. The results showed that both the compressive strength and the dynamic modulus, as well as the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter of the specimen decrease to some extent with the amount of microcapsules. However, the self-healing rate and the recovery rate of the specimen performance and the pore-structure parameters increase with the amount of microcapsules. The results should confirm the self-healing function of microcapsules in the cementitious composite from macroscopic and microscopic viewpoints.
Project description:This study reports on the development of a cementitious composite incorporating electrochemically exfoliated graphene (EEG). This hybrid functional material features significantly enhanced microstructure and mechanical properties, as well as unaffected workability; thus, it outperforms previously reported cementitious composites containing graphene derivatives. The manufacturing of the composite relies on a simple and efficient method that enables the uniform dispersion of EEG within cement matrix in the absence of surfactants. Different from graphene oxide, EEG is found to not agglomerate in cement alkaline environment, thereby not affecting the fluidity of cementitious composites. The addition of 0.05 wt% graphene content to ordinary Portland cement results in an increase up to 79%, 8%, and 9% for the tensile strength, compressive strength, and Young's modulus, respectively. Remarkably, it is found that the addition of EEG promotes the hydration reaction of both alite and belite, thus leading to the formation of a large fraction of 3CaO·2SiO2·3H2O (C-S-H) phase. These findings represent a major step forward toward the practical application of nanomaterials in civil engineering.
Project description:Conventional internal curing materials for high-performance cementitious system cannot easily have artificial modifications, such that the curing effect is difficult to control during the process. In this study, a novel microcapsule is proposed for controlled internal curing of cement-based materials. The microcapsules are synthesized by a double emulsion method to form a polymer shell-water core structure. The sensitivity of polymer shell to alkaline environments is used to trigger the release of core water. Thus, water release can be controlled by tailoring the shell thickness and microcapsules sizes by changing the polymer dosage and stirring rate during synthesis. The experimental results indicate that the novel microcapsules can effectively release water for internal curing of a cementitious matrix, which exhibits a high curing efficiency in terms of nearly autogenous shrinkage and increases the compressive strength. The novel microcapsules could be promising internal curing agents to enhance high-performance cement-based materials.
Project description:Extrusion based additive manufacturing of cementitious materials has demonstrated strong potential to become widely used in the construction industry. However, the use of this technique in practice is conditioned by a feasible solution to implement reinforcement in such automated process. One of the most successful ductile materials in civil engineering, strain hardening cementitious composites (SHCC) have a high potential to be employed for three-dimensional printing. The match between the tailored brittle matrix and ductility of the fibres enables these composites to develop multiple cracks when loaded under tension. Using previously developed mixtures, this study investigates the physical and mechanical performance of printed SHCC. The anisotropic behavior of the materials is explored by means of mechanical tests in several directions and micro computed tomography tests. The results demonstrated a composite showing strain hardening behavior in two directions explained by the fibre orientation found in the printed elements. Moreover, the printing technique used also has guaranteed an enhanced bond in between the printed layers.
Project description:Self-healing of cracks in cementitious materials using healing agents encapsulated in microcapsules is an intelligent and effective method. In this study, microcapsules were prepared by the melt-dispersion-condensation method using microcrystalline wax as the shell and E-51 epoxy resin as the healing agent. The effects of preparation process parameters and microcrystalline wax/E-51 epoxy resin weight ratio on the core content, particle size distribution, thermal properties, morphology, and chemical composition of microcapsules were investigated. The results indicated that the optimal parameters of the microcapsule were microcrystalline wax/E-51 epoxy resin weight ratio of 1:1.2, stirring speed of 900 rpm, and preparation temperature of 105 °C. The effects of microcapsules on pore size distribution, pore structure, mechanical properties, permeability, and ultrasonic amplitude of mortar were determined, and the self-healing ability of mortar with different contents of microcapsules was evaluated. The optimal content of microcapsules in mortars was 4% of the cement weight, and the surface cracks of mortar containing microcapsules with an initial width of 0.28 mm were self-healed within three days, indicating that microcapsules have excellent self-healing ability for cementitious materials.
Project description:In this paper, we take cement mortar and paste as specimens, a novelty method named ultrasonic surface treatment(UST) was employed to form a hardening surface layer on cementitious specimens to improve its wind-blown sand erosion resistance, surface hardness and apparent density. The specimens with curing ages of 1-day, 3-days, 7-days, and 28-days were adopted. The wind blown sand erosion test was carried out in a wind-blown sand erosion test system, which simulated a wind blown sand environment of a wind speed of 30 m/s and a sand feed rate of 30 g/min. The erosion angle of 30°, 60°, 90° were adopted. The mass loss in erosion process was measured, then the erosion resistance was calculated. The surface hardness was tested with a Vickers micro hardness tester. The apparent density of cement paste was measured with mass volume method. The data provided reveal the improvement on wind blown sand erosion resistance, surface hardnenss and apparent density of cementitious materials with ultrasonic surface treatment. That may be used in the investigation on improving the erosion resistance and to evaluate the effectiveness of the UST method on cementitious materials.
Project description:A microcapsule-type self-healing protective coating with secondary crack preventing capability has been developed using a silanol-terminated polydimethylsiloxane (STP)/dibutyltin dilaurate (DD) healing agent. STP undergoes condensation reaction in the presence of DD to give a viscoelastic substance. STP- and DD-containing microcapsules were prepared by in-situ polymerization and interfacial polymerization methods, respectively. The microcapsules were characterized by Fourier-transform infrared (FT-IR) spectroscopy, optical microscopy, and scanning electron microscopy (SEM). The microcapsules were integrated into commercial enamel paint or epoxy coating formulations, which were applied on silicon wafers, steel panels, and mortar specimens to make dual-capsule self-healing protective coatings. When the STP/DD-based coating was scratched, self-healing of the damaged region occurred, which was demonstrated by SEM, electrochemical test, and water permeability test. It was also confirmed that secondary crack did not occur in the healed region upon application of vigorous vibration to the self-healing coating.
Project description:Organic phase change materials (PCMs) represent an effective solution to manage intermittent energy sources as the solar thermal energy. This work aims at encapsulating docosane in organosilica shells and at dispersing the produced capsules in epoxy/carbon laminates to manufacture multifunctional structural composites for thermal energy storage (TES). Microcapsules of different sizes were prepared by hydrolysis-condensation of methyltriethoxysilane (MTES) in an oil-in-water emulsion. X-ray diffraction (XRD) highlighted the difference in the crystalline structure of pristine and microencapsulated docosane, and 13C solid-state nuclear magnetic resonance (NMR) evidenced the influence of microcapsules size on the shifts of the representative docosane signals, as a consequence of confinement effects, i.e., reduced chain mobility and interaction with the inner shell walls. A phase change enthalpy up to 143 J/g was determined via differential scanning calorimetry (DSC) on microcapsules, and tests at low scanning speed emphasized the differences in the crystallization behavior and allowed the calculation of the phase change activation energy of docosane, which increased upon encapsulation. Then, the possibility of embedding the microcapsules in an epoxy resin and in an epoxy/carbon laminate to produce a structural TES composite was investigated. The presence of microcapsules agglomerates and the poor capsule-epoxy adhesion, both evidenced by scanning electron microscopy (SEM), led to a decrease in the mechanical properties, as confirmed by three-point bending tests. Dynamic mechanical analysis (DMA) highlighted that the storage modulus decreased by 15% after docosane melting and that the glass transition temperature of the epoxy resin was not influenced by the PCM. The heat storage/release properties of the obtained laminates were proved through DSC and thermal camera imaging tests.
Project description:Self-healing microcapsules were synthesized by in situ polymerization with a melamine urea-formaldehyde resin shell and an epoxy resin adhesive. The effects of the key factors, i.e., core-wall ratio, reaction temperature, pH and stirring rate, were investigated by characterizing microcapsule morphology, shell thickness, particle size distribution, mechanical properties and chemical nature. Microcapsule healing mechanisms in cement paste were evaluated based on recovery strength and healing microstructure. The results showed that the encapsulation ability, the elasticity modulus and hardness of the capsule increased with an increase of the proportion of shell material. Increased polymerization temperatures were beneficial to the higher degree of shell condensation polymerization, higher resin particles deposition on microcapsule surfaces and enhanced mechanical properties. For relatively low pH values, the less porous three-dimensional structure led to the increased elastic modulus of shell and the more stable chemical structure. Optimized microcapsules were produced at a temperature of 60 °C, a core-wall ratio of 1:1, at pH 2~3 and at a stirring rate of 300~400 r/min. The best strength restoration was observed in the cement paste pre-damaged by 30% fmax and incorporating 4 wt % of capsules.
Project description:The present study introduces a novel approach utilizing machine learning techniques to predict the crucial mechanical properties of engineered cementitious composites (ECCs), spanning from typical to exceptionally high strength levels. These properties, including compressive strength, flexural strength, tensile strength, and tensile strain capacity, can not only be predicted but also precisely estimated. The investigation encompassed a meticulous compilation and examination of 1532 datasets sourced from pertinent research. Four machine learning algorithms, linear regression (LR), K nearest neighbors (KNN), random forest (RF), and extreme gradient boosting (XGB), were used to establish the prediction model of ECC mechanical properties and determine the optimal model. The optimal model was utilized to employ SHapley Additive exPlanations (SHAP) for scrutinizing feature importance and conducting an in-depth parametric analysis. Subsequently, a comprehensive control strategy was devised for ECC mechanical properties. This strategy can provide actionable guidance for ECC design, equipping engineers and professionals in civil engineering and material science to make informed decisions throughout their design endeavors. The results show that the RF model demonstrated the highest prediction accuracy for compressive strength and flexural strength, with R2 values of 0.92 and 0.91 on the test set. The XGB model outperformed in predicting tensile strength and tensile strain capacity, with R2 values of 0.87 and 0.80 on the test set, respectively. The prediction of tensile strain capacity was the least accurate. Meanwhile, the MAE of the tensile strain capacity was a mere 0.84%, smaller than the variability (1.77%) of the test results in previous research. Compressive strength and tensile strength demonstrated high sensitivity to variations in both water-cement ratio (W) and water reducer (WR). In contrast, flexural strength exhibited high sensitivity solely to changes in W. Conversely, the sensitivity of tensile strain capacity to input features was moderate and consistent. The mechanical attributes of ECC emerged from the combined effects of multiple positive and negative features. Notably, WR exerted the most significant influence on compressive strength among all features, whereas polyethylene (PE) fiber emerged as the primary driver affecting flexural strength, tensile strength, and tensile strain capacity.