Soft X-ray Exposure Promotes Na Intercalation in Graphene Grown on Si-Face SiC.
Ontology highlight
ABSTRACT: An investigation of how electron/photon beam exposures affect the intercalation rate of Na deposited on graphene prepared on Si-face SiC is presented. Focused radiation from a storage ring is used for soft X-ray exposures while the electron beam in a low energy electron microscope is utilized for electron exposures. The microscopy and core level spectroscopy data presented clearly show that the effect of soft X-ray exposure is significantly greater than of electron exposure, i.e., it produces a greater increase in the intercalation rate of Na. Heat transfer from the photoelectrons generated during soft X-ray exposure and by the electrons penetrating the sample during electron beam exposure is suggested to increase the local surface temperature and thus the intercalation rate. The estimated electron flux density is 50 times greater for soft X-ray exposure compared to electron exposure, which explains the larger increase in the intercalation rate from soft X-ray exposure. Effects occurring with time only at room temperature are found to be fairly slow, but detectable. The graphene quality, i.e., domain/grain size and homogeneity, was also observed to be an important factor since exposure-induced effects occurred more rapidly on a graphene sample prepared in situ compared to on a furnace grown sample.
Project description:We investigated how to control the growth of vertically aligned graphene on C-face SiC by varying the processing conditions. It is found that, the growth rate scales with the annealing temperature and the graphene height is proportional to the annealing time. Temperature gradient and crystalline quality of the SiC substrates influence their vaporization. The partial vapor pressure is crucial as it can interfere with further vaporization. A growth mechanism is proposed in terms of physical vapor transport. The monolayer character of vertically aligned graphene is verified by Raman and X-ray absorption spectroscopy. With the processed samples, d0 magnetism is realized and negative magnetoresistance is observed after Cu implantation. We also prove that multiple carriers exist in vertically aligned graphene.
Project description:Epitaxial graphene films grown on silicon carbide (SiC) substrate by solid state graphitization is of great interest for electronic and optoelectronic applications. In this paper, we explore the properties of epitaxial graphene films on 3C-SiC(111)Si(111) substrate. X-ray photoelectron spectroscopy and scanning tunneling microscopy were extensively used to characterize the quality of the few-layer graphene (FLG) surface. The Raman spectroscopy studies were useful in confirming the graphitic composition and measuring the thickness of the FLG samples.
Project description:We investigate the intercalation process of oxygen in-between a PVD-grown graphene layer and different copper substrates as a methodology for reducing the substrate-layer interaction. This growth method leads to an extended defect-free graphene layer that strongly couples with the substrate. We have found, by means of X-ray photoelectron spectroscopy, that after oxygen exposure at different temperatures, ranging from 280 °C to 550 °C, oxygen intercalates at the interface of graphene grown on Cu foil at an optimal temperature of 500 °C. The low energy electron diffraction technique confirms the adsorption of an atomic oxygen adlayer on top of the Cu surface and below graphene after oxygen exposure at elevated temperature, but no oxidation of the substrate is induced. The emergence of the 2D Raman peak, quenched by the large interaction with the substrate, reveals that the intercalation process induces a structural undoing. As suggested by atomic force microscopy, the oxygen intercalation does not change significantly the surface morphology. Moreover, theoretical simulations provide further insights into the electronic and structural undoing process. This protocol opens the door to an efficient methodology to weaken the graphene-substrate interaction for a more efficient transfer to arbitrary surfaces.
Project description:The intrinsic n-type of epitaxial graphene on SiC substrate limits its applications in microelectronic devices, and it is thus vital to modulate and achieve p-type and charge-neutral graphene. The main groups of metal intercalations, such as Ge and Sn, are found to be excellent candidates to achieve this goal based on the first-principle calculation results. They can modulate the conduction type of graphene via intercalation coverages and bring out interesting magnetic properties to the entire intercalation structures without inducing magnetism to graphene, which is superior to the transition metal intercalations, such as Fe and Mn. It is found that the Ge intercalation leads to ambipolar doping of graphene, and the p-type graphene can only be obtained when forming the Ge adatom between Ge layer and graphene. Charge-neutral graphene can be achieved under high Sn intercalation coverage (7/8 bilayer) owing to the significantly increased distance between graphene and deformed Sn intercalation. These findings would open up an avenue for developing novel graphene-based spintronic and electric devices on SiC substrate.
Project description:The crystallinity of epitaxial graphene (EG) grown on a Hexagonal-SiC substrate is found to be enhanced greatly by capping the substrate with a molybdenum plate (Mo-plate) during vacuum annealing. The crystallinity enhancement of EG layer grown with Mo-plate capping is confirmed by the significant change of measured Raman spectra, compared to the spectra for no capping. Mo-plate capping is considered to induce heat accumulation on SiC surface by thermal radiation mirroring and raise Si partial pressure near surface by confining the sublimated Si atoms between SiC substrate and Mo-plate, which would be the essential contributors of crystallinity enhancement.
Project description:Single crystals of a Na-Ga-Si clathrate, Na8Ga5.70Si40.30, of size 2.9 mm were grown via the evaporation of Na from a Na-Ga-Si melt with the molar ratio of Na : Ga : Si = 4 : 1 : 2 at 773 K for 21 h under an Ar atmosphere. The crystal structure was analyzed using X-ray diffraction with the model of the type-I clathrate (cubic, a = 10.3266(2) Å, space group Pm3̄n, no. 223). By adding Sn to a Na-Ga-Si melt (Na : Ga : Si : Sn = 6 : 1 : 2 : 1), single crystals of Na8Ga x Si46-x (x = 4.94-5.52, a = 10.3020(2)-10.3210(3) Å), with the maximum size of 3.7 mm, were obtained via Na evaporation at 723-873 K. The electrical resistivities of Na8Ga5.70Si40.30 and Na8Ga4.94Si41.06 were 1.40 and 0.72 mΩ cm, respectively, at 300 K, and metallic temperature dependences of the resistivities were observed. In the Si L2,3 soft X-ray emission spectrum of Na8Ga5.70Si40.30, a weak peak originating from the lowest conduction band in the undoped Si46 was observed at an emission energy of 98 eV.
Project description:Li intercalation is commonly used to enhance the carrier density in epitaxial graphene and mitigate coupling to the substrate. So far, the understanding of the intercalation process, particularly how Li penetrates different layers above the substrate, and its impact on electron transport remains incomplete. Here, we report different phases of Li intercalation and their kinetic processes in epitaxial mono- and bilayer graphene grown on SiC. The distinct doping effects of each intercalation phase are characterized using scanning tunneling spectroscopy. Furthermore, changes in the local conduction regimes are directly mapped by scanning tunneling potentiometry and attributed to different charge transfer states of the intercalated Li. The stable intercalation marked by the formation of Li-Si bonds leads to a significant 56% reduction in sheet resistance of the resulting quasi-free bilayer graphene, as compared to the pristine monolayer graphene.
Project description:Since the successful exfoliation of graphene, various methodologies have been developed to identify the number of layers of exfoliated graphene. The optical contrast, Raman G-peak intensity, and 2D-peak line-shape are currently widely used as the first level of inspection for graphene samples. Although the combination analysis of G- and 2D-peaks is powerful for exfoliated graphene samples, its use is limited in chemical vapor deposition (CVD)-grown graphene because CVD-grown graphene consists of various domains with randomly rotated crystallographic axes between layers, which makes the G- and 2D-peaks analysis difficult for use in number identification. We report herein that the Raman Si-peak intensity can be a universal measure for the number identification of multilayered graphene. We synthesized a few-layered graphene via the CVD method and performed Raman spectroscopy. Moreover, we measured the Si-peak intensities from various individual graphene domains and correlated them with the corresponding layer numbers. We then compared the normalized Si-peak intensity of the CVD-grown multilayer graphene with the exfoliated multilayer graphene as a reference and successfully identified the layer number of the CVD-grown graphene. We believe that this Si-peak analysis can be further applied to various 2-dimensional (2D) materials prepared by both exfoliation and chemical growth.
Project description:Single-crystal silicon carbide (SiC) thin-films on silicon (Si) were used for the fabrication and characterization of electrically conductive distributed Bragg reflectors (DBRs) on 100 mm Si wafers. The DBRs, each composed of 3 alternating layers of SiC and Al(Ga)N grown on Si substrates, show high wafer uniformity with a typical maximum reflectance of 54% in the blue spectrum and a stopband (at 80% maximum reflectance) as large as 100 nm. Furthermore, high vertical electrical conduction is also demonstrated resulting to a density of current exceeding 70 A/cm(2) above 1.5 V. Such SiC/III-N DBRs with high thermal and electrical conductivities could be used as pseudo-substrate to enhance the efficiency of SiC-based and GaN-based optoelectronic devices on large Si wafers.
Project description:We report carrier density measurements and electron-electron (e-e) interactions in monolayer epitaxial graphene grown on SiC. The temperature (T)-independent carrier density determined from the Shubnikov-de Haas (SdH) oscillations clearly demonstrates that the observed logarithmic temperature dependence of Hall slope in our system must be due to e-e interactions. Since the electron density determined from conventional SdH measurements does not depend on e-e interactions based on Kohn's theorem, SdH experiments appear to be more reliable compared with the classical Hall effect when one studies the T dependence of the carrier density in the low T regime. On the other hand, the logarithmic T dependence of the Hall slope δRxy/δB can be used to probe e-e interactions even when the conventional conductivity method is not applicable due to strong electron-phonon scattering.