Unknown

Dataset Information

0

Reduction of Photoluminescence Quenching by Deuteration of Ytterbium-Doped Amorphous Carbon-Based Photonic Materials.


ABSTRACT: In situ Yb-doped amorphous carbon thin films were grown on Si substrates at low temperatures (<200 °C) by a simple one-step RF-PEMOCVD system as a potential photonic material for direct integration with Si CMOS back end-of-line processing. Room temperature photoluminescence around 1 µm was observed via direct incorporation of optically active Yb3+ ions from the selected Yb(fod)₃ metal-organic compound. The partially fluorinated Yb(fod)₃ compound assists the suppression of photoluminescence quenching by substitution of C-H with C-F bonds. A four-fold enhancement of Yb photoluminescence was demonstrated via deuteration of the a-C host. The substrate temperature greatly influences the relative deposition rate of the plasma dissociated metal-organic species, and hence the concentration of the various elements. Yb and F incorporation are promoted at lower substrate temperatures, and suppressed at higher substrate temperatures. O concentration is slightly elevated at higher substrate temperatures. Photoluminescence was limited by the concentration of Yb within the film, the concentration of Yb ions in the +3 state, and the relative amount of quenching due to the various de-excitation pathways associated with the vibrational modes of the host a-C network. The observed wide full-width-at-half-maximum photoluminescence signal is a result of the variety of local bonding environments due to the a-C matrix, and the bonding of the Yb3+ ions to O and/or F ions as observed in the X-ray photoelectron spectroscopy analyses.

SUBMITTER: Hsu HL 

PROVIDER: S-EPMC5456179 | biostudies-other | 2014 Aug

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC8042215 | biostudies-literature
| S-EPMC6107639 | biostudies-literature
| S-EPMC3888979 | biostudies-literature
| S-EPMC7381680 | biostudies-literature
| S-EPMC4329557 | biostudies-other
| S-EPMC6534678 | biostudies-literature