Processing and Mechanical Properties of Macro Polyamide Fiber Reinforced Concrete.
Ontology highlight
ABSTRACT: This study developed a macro-sized polyamide (PA) fiber for concrete reinforcement and investigated the influence of the PA fiber on flexural responses in accordance with ASTM standards. PA fibers are advantageous compared to steel fibers that are corrosive and gravitated. The macro-sized PA fiber significantly improved concrete ductility and toughness. Unlike steel fibers, the PA fibers produced two peak bending strengths. The first-peaks occurred near 0.005 mm of deflection and decreased up to 0.5 mm of deflection. Then the bending strength increased up to second-peaks until the deflections reached between 1.0 and 1.5 mm. The averaged flexural responses revealed that PA fiber content did not significantly influence flexural responses before L/600, but had significant influence thereafter. Toughness performance levels were also determined, and the results indicated more than Level II at L/600 and Level IV at others.
Project description:In this study, an experimental investigation was conducted on the mechanical properties of lightweight aggregate concrete (LWAC) with different chopped fibers, including basalt fiber (BF) and polyacrylonitrile fiber (PANF). The LWAC performance was studied in regard to compressive strength, splitting tensile strength and shear strength at age of 28 days. In addition, the oven-dried density and water absorption were measured as well to confirm whether the specimens match the requirement of standard. In total, seven different mixture groups were designed and approximately 104 LWAC samples were tested. The test results showed that the oven-dried densities of the LWAC mixtures were in range of 1.819-1.844 t/m3 which satisfied the definition of LWAC by Chinese Standard. Additionally, water absorption decreased with the increasing of fiber content. The development tendency of the specific strength of LWAC was the same as that of the cube compressive strength. The addition of fibers had a significant effect on reducing water absorption. Adding BF and PANF into concrete had a relatively slight impact on the compressive strength but had an obvious effect on splitting tensile strength, flexural strength and shear strength enhancement, respectively. In that regard, a 1.5% fiber volume fraction of BF and PANF showed the maximum increase in strength. The use of BF and PANF could change the failure morphologies of splitting tensile and flexural destruction but almost had slight impact on the shear failure morphology. The strength enhancement parameter ? was proposed to quantify the improvement effect of fibers on cube compressive strength, splitting tensile strength, flexural strength and shear strength, respectively. And the calculation results showed good agreement with test value.
Project description:The frequency of engineering fires is increasing, and the study of the residual mechanical properties of steel fiber-reinforced rubber concrete (SFRRC) after high temperatures is essential for evaluating its load-bearing capacity after fire. This study examines the mechanical properties of SFRRC after being subjected to elevated temperatures, considering the impacts of varying steel fiber amounts (Vsf =0.6, 1.2%) and different rubber substitution ratio (rg=0, 5, 10, 15%) on the specimens after different temperatures (20, 200, 400, 600, 800 °C). All specimens were tested in cubic and axial compression, split tensile and four-point flexure tests. The findings indicated that steel fibers and rubber enhance the durability and safety of concrete by reducing the risk of cracking at high temperatures and inhibiting crack extension. When 1.2% steel fibers and 5% rubber particles were added, the mechanical properties of specimens after exposure to high temperatures were improved compared to normal concrete, with cube compressive strength, uniaxial compressive strength, splitting tensile strength, and flexural strength increased by 0.23-8.48%, 1.13-4.16%, 22.92-44.23%, and 3.03-19.81%, respectively. In this study, the mechanism of temperature action on SFRRC was analyzed. On the basis of experimental data, prediction models for SFRRC after high temperatures were proposed. The models were compared with experimental data and previous research results. The results of the study will help to promote the formulation of specifications in related fields and promote the practical application of SFRRC as a novel material.
Project description:Blending a certain proportion of basalt fiber into concrete improves the toughness of concrete, which prevents cracking and avoids the brittle behaviors. In this paper, the compressive, tensile, and flexural tests of concrete with different basalt fiber contents were carried out. Then the test phenomena, failure modes, and mechanical properties were compared and analyzed to derive the relationship between the basalt fiber contents and mechanical properties. The toughness and crack resistance performance of basalt fiber reinforced concrete were evaluated by the fracture energy, advanced toughness parameters, and characteristic length proposed by Hillerborg. The correlation coefficient of basalt fiber was introduced to establish the calculation formula for mechanical properties of basalt fiber reinforced concrete. The results indicated that basalt fiber significantly improved the toughness and crack resistance performance of concrete. The enhancing effect of the basalt fiber on the compressive strength of concrete is lower than that of tensile strength and flexural strength. Moreover, the improvement effect was the highest with the basalt fiber content was 0.3% and 0.4%.
Project description:Steel fiber reinforced concrete (SFRC) offers improved toughness, crack resistance, and impact resistance. Nano-silica enhances the strength, durability, and workability of concrete. This study investigated the combined effect of nano-silica and steel microfibers, termed micro-concrete reinforced with steel fibers embedding nano-silica (MRFAIN), on the mechanical properties of concrete. The aim was to determine the influence of different percentages of nano-silica and steel microfibers on fresh state properties, mechanical strength, and mechanical performance of MRFAIN. MRFAIN mixtures were prepared with cement, sand, water, superplasticizer, varying dosages of nano-silica (0-2%), and steel microfibers (0-2% by volume). Mechanical properties evaluated at 28 days included compressive strength, flexural strength, modulus of elasticity, and fracture energy. Incorporating steel microfibers reduced workability but enhanced mechanical properties like strength and ductility. Nano-silica addition showed variable effects on compressive strength but increased tensile strength. Optimal nano-silica content was 1% and steel microfibers 2%, giving compressive strength 122.5 MPa, tensile strength 25.4 MPa, modulus of elasticity 42.7 GPa. Using nano-silica and steel, microfibers enhanced the mechanical performance of steel fiber-reinforced concrete. This shows potential for reducing construction waste and pollution. Further research can optimize the proportions of nano-silica and steel microfibers in MRFAIN.
Project description:Conventional concrete production that uses ordinary Portland cement (OPC) as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO₂) emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS) from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO₂ emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO₂ intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO₂ emissions reduction and resources and energy conservation in the concrete industry.
Project description:Fiber reinforced polymer composites (FRPs) are valuable construction materials owing to their strength, durability, and design flexibility; however, conventional FRPs utilize petroleum-based polymer matrices with limited recyclability. Furthermore, fiber reinforcements are made from nonrenewable feedstocks, through expensive and energy intensive processes, making recovery and reuse advantageous. Thus, FRPs that use biobased and degradable or reprocessable matrices would enable a more sustainable product, as both components can be recovered and reused. We previously developed a family of degradable and reprocessable cross-linked polyesters from bioderived cyclic esters (l-lactide, δ-valerolactone, and ε-caprolactone) copolymerized with a bis(1,3-dioxolan-4-one) cross-linker. We now incorporate these networks into FRPs and demonstrate degradability of the matrix into tartaric acid and oligomers, enabling recovery and reuse of the fiber reinforcement. Furthermore, the effect of varying comonomer structure, catalyst, reinforcement type, and lay-up method on mechanical properties of the resultant FRPs is explored. The FRPs produced have tensile strengths of up to 202 MPa and Young's moduli up to 25 GPa, promising evidence that sustainable FRPs can rival the mechanical properties of conventional high performance FRPs.
Project description:Metal oxide nanoparticle -reinforced polymers have received considerable attention due to their favorable mechanical properties compared to neat materials. However, the effect of nanoscale reinforcements of the interface on the composites' mechanical properties has not been investigated in-depth to reach their optimal performance in structural applications. Aiming at revealing the effect of synergistic interfacial interactions on the mechanical properties of polymer composites, using a nanoscale reinforcement, herein, a series of zinc oxide nanorod-reinforced polyamide-imide (PAI)/ZnO) composites were fabricated and their mechanical properties and viscoelastic responses were investigated. The composite prepared by reinforcing them with 5 wt % ZnO nanorods resulted in improved elastic modulus, stiffness, and hardness values by 32%, 14% and 35%, respectively, compared to neat polymer thin films. The viscoelastic dynamics of the composites revealed that there was an 11% increase in elastic wave speed in the composite, containing 5 wt % ZnO nanorods, indicating better response to high impacts. Delayed viscoelastic response decreased by 67% spatially and 51% temporally, with a corresponding decrease in the creep rate, for the 5 wt % ZnO nanorod- containing composite, evidencing its potential applicability in high strength lightweight structures. The improved mechanical properties with respect to the filler concentration evidence strong particle-polymer interfacial interactions, creating "chain-bound" clusters, providing clear reinforcement and polymer chain mobility retardation. However, hypervelocity impact testing revealed that all the composites' films were vulnerable to hypervelocity impact, but the spallation region of the composite films reinforced with 2.5 wt % and 5 wt % ZnO nanorods exhibited a cellular-like matrix with shock-induced voids compared to a rather hardened spallation region with cracks in the neat film.
Project description:Currently, one of the topical areas of application of artificial intelligence methods in industrial production is neural networks, which allow for predicting the performance properties of products and structures that depend on the characteristics of the initial components and process parameters. The purpose of the study was to develop and train a neural network and an ensemble model to predict the mechanical properties of lightweight fiber-reinforced concrete using the accumulated empirical database and data from construction industry enterprises, and to improve production processes in the construction industry. The study applied deep learning and an ensemble of regression trees. The empirical base is the result of testing a series of experimental compositions of fiber-reinforced concrete. The predicted properties are cubic compressive strength, prismatic compressive strength, flexural tensile strength, and axial tensile strength. The quantitative picture of the accuracy of the applied methods for strength characteristics varies for the deep neural network method from 0.15 to 0.73 (MAE), from 0.17 to 0.89 (RMSE), and from 0.98% to 6.62% (MAPE), and for the ensemble of regression trees, from 0.11 to 0.62 (MAE), from 0.15 to 0.80 (RMSE), and from 1.30% to 3.4% (MAPE). Both methods have shown high efficiency in relation to such a hard-to-predict material as concrete, which is so heterogeneous in structure and depends on many factors. The value of the developed models lies in the possibility of obtaining additional useful information in the process of preparing highly functional lightweight fiber-reinforced concrete without additional experiments.
Project description:In this paper, shear strength of fiber reinforced recycled concrete was investigated. A Self Consolidated Concrete (SCC) matrix with 100% coarse recycled aggregate and different types of fibers were used in the study. Steel (3D and 5D), synthetic and hybrid fibers with a volume fraction of 0.75% were added to the concrete matrix to prepare eight beams. In addition, two beams were cast without fibers as control specimens. All beams were prepared without shear reinforcement and were tested to evaluate concrete contribution to the shear capacity. In addition, optical images were captured to allow for full-field displacement measurements using Digital Image Correlation (DIC). The results showed about 23.44-64.48% improvement in the average concrete shear capacity for fiber-reinforced beams when compared to that of the control specimens. The percentage improvement was affected by fiber type and the steel fiber beams achieved the best performance. The addition of the fiber delayed the crack initiation and improved the post-cracking and ductile behavior of all beams. Moreover, the experimental results were compared to those predicted by codes and proposed equations found in the literature for concrete strength with and without fibers.
Project description:This study intends to establish the mechanical properties of polyamide fiber reinforced shotcrete (PAFRS) in terms of compressive and flexural strengths, in accordance with ASTM C1609/C1609M-12. The mechanical properties identified the influence of polyamide fiber content on the PAFRS strength. This study evaluated the toughness of PAFRS and proposed additional toughness level criteria to better represent organic fiber performance. In addition, the fiber rebounding rate and PAFRS performance in tunneling application were evaluated based on a tunnel application in Korea. PAFRS with 0.6%~0.8% volume content in tunneling shotcrete could significantly improve flexural ductility, toughness, and ultimate load capacity. Fiber rebounding tests exhibited a low rebounding rate (8.5%) and low fiber drop (63.5%). Therefore, PAFRS applied to a tunnel exhibited stability and constructability.