Formation and Entrapment of Tris(8-hydroxyquinoline)aluminum from 8-Hydroxyquinoline in Anodic Porous Alumina.
Ontology highlight
ABSTRACT: The formation and entrapment of tris(8-hydroxyquinoline)aluminum (Alq₃) molecules on the surface of anodic porous alumina (APA) immersed in an ethanol solution of 8-hydroxyquinoline (HQ) were investigated by absorption, fluorescence, and Raman spectroscopies. The effects of the selected APA preparation conditions (galvanostatic or potentiostatic anodization method, anodizing current and voltage values, one- or two-step anodizing process, and sulfuric acid electrolyte concentration) on the adsorption and desorption of Alq₃ species were examined. Among the listed parameters, sulfuric acid concentration was the most important factor in determining the Alq₃ adsorption characteristics. The Alq₃ content measured after desorption under galvanostatic conditions was 2.5 times larger than that obtained under potentiostatic ones, regardless of the adsorbed quantities. The obtained results suggest the existence of at least two types of adsorption sites on the APA surface characterized by different magnitudes of the Alq₃ bonding strength. The related fluorescence spectra contained two peaks at wavelengths of 480 and 505 nm, which could be attributed to isolated Alq₃ species inside nanovoids and aggregated Alq₃ clusters in the pores of APA, respectively. The former species were attached to the adsorption sites with higher binding energies, whereas the latter ones were bound to the APA surface more weakly. Similar results were obtained for the Alq₃ species formed from the HQ solution, which quantitatively exceeded the number of the Alq₃ species adsorbed from the Alq₃ solution. Alq₃ molecules were formed in the HQ solution during the reaction of HQ molecules with the Al3+ ions in the oxide dissolution zone near the oxide/electrolyte interface through the cracks and the Al3+ ions adsorbed on surface of pore and cracks. In addition, it was suggested that HQ molecules could penetrate the nanovoids more easily than Alq₃ species because of their smaller sizes, which resulted in higher magnitudes of the adsorption.
Project description:Anodic porous alumina is a known material based on an old industry, yet with emerging applications in nanoscience and nanotechnology. This is promising, but the nanostructured alumina should be fabricated from inexpensive raw material. We fabricated porous alumina from commercial aluminum food plate in 0.4 M aqueous phosphoric acid, aiming to design an effective manufacturing protocol for the material used as nanoporous filler in dental restorative composites, an application demonstrated previously by our group. We identified the critical input parameters of anodization voltage, bath temperature and anodization time, and the main output parameters of pore diameter, pore spacing and oxide thickness. Scanning electron microscopy and grain analysis allowed us to assess the nanostructured material, and the statistical design of experiments was used to optimize its fabrication. We analyzed a preliminary dataset, designed a second dataset aimed at clarifying the correlations between input and output parameters, and ran a confirmation dataset. Anodization conditions close to 125 V, 20°C, and 7 h were identified as the best for obtaining, in the shortest possible time, pore diameters and spacing of 100-150 nm and 150-275 nm respectively, and thickness of 6-8 µm, which are desirable for the selected application according to previously published results. Our analysis confirmed the linear dependence of pore size on anodization voltage and of thickness on anodization time. The importance of proper control on the experiment was highlighted, since batch effects emerge when the experimental conditions are not exactly reproduced.
Project description:Three-dimensional (3D) nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties or make a device. However, the amount of compounds with the ability to self-organize in ordered 3D nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards 3D nanostructures. Here we report the simple fabrication of a template based on anodic aluminium oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100-nm range. The 3D templates are then employed to achieve 3D, ordered nanowire networks in Bi2Te3 and polystyrene. Finally, we demonstrate the photonic crystal behaviour of both the template and the polystyrene 3D nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals and semiconductors.
Project description:A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell-electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.
Project description:Anodic porous alumina (APA) is a nanostructured material used as a template in several nanotechnological applications. We propose the use of APA in ultra-thin form (<100 nm) for augmented surface-enhanced Raman scattering (SERS). Here, the effect of in-depth thinning of the APA nanostructures for possible maximization of SERS was addressed. Anodization was carried out on ultra-thin films of aluminum on glass and/or silicon, followed by pore-opening. Gold (Au) was overcoated and micro‑Raman/SERS measurements were carried out on test target analytes. Finite integration technique simulations of the APA-Au substrate were used both for the experimental design and simulations. It was observed that, under optimized conditions of APA and Au thickness, the SERS enhancement is higher than on standard APA-Au substrates based on thin (~100 nm) APA by up to a factor of ~20 for test molecules of mercaptobenzoic acid. The agreement between model and experimental results confirms the current understanding of SERS as being mainly due to the physical origin of plasmon resonances. The reported results represent one step towards micro-technological, integrated, disposable, high-sensitivity SERS chemical sensors and biosensors based on similar substrates.
Project description:Passive radiative cooling technology has the potential to revolutionize the way of cooling buildings and devices, while also helping to reduce the carbon footprint and energy consumption. Pioneer works involving anodic aluminum oxide (AAO) nanostructures showed controversial results. In this work, we clarify how the morphological properties and chemical structure of AAO-Al samples affect their optical properties and their cooling performance. Changes in thickness, interpore distance, and porosity of the alumina layer, as well as the used counterions, significantly affect the cooling ability of the AAO-Al structure. We measure a maximum temperature reduction, ΔT, of 8.0 °C under direct sunlight on a summer day in Spain, coinciding with a calculated peak cooling power, P cool, of 175 W/m2, using an AAO-Al sample anodized in sulfuric acid, with 12 μm of AAO thickness and 10% of porosity. These results represent a significant improvement over previous studies, demonstrating the potential of AAO nanostructures to be used in thermal management applications.
Project description:The conditions applied during the electrochemical polishing of aluminum were found to be important parameters for the successive formation of nanoporous alumina films. First, a high-purity Al foil was electrochemically polished in an aqueous solution containing C2H5OH and HClO4 at various sets of conditions, such as applied potential (5-35 V), temperature (0-20 °C), and process duration (10-180 s). Extensive studies of the topography of Al after polishing by scanning electron microscopy and atomic force microscopy allow verification of the correlations between conditions applied during the substrate pretreatment and dimensions of the nanopatterns generated on the metal surface. Next, Al polished samples at two different sets of conditions were used as starting materials for anodization. Unpolished Al samples were also anodized for reference. It was confirmed that electropolishing conditions do not significantly affect the oxide growth rate during anodization and the efficiency of anodic film formation. On the contrary, it was proved that the dimensions of the surface texture formed during Al polishing significantly affect the morphology and pore order within the anodic film. Therefore, it can be stated that it is possible to tune to some extent the arrangement of nanochannels within anodic aluminum oxide films by simply changing conditions during the electropolishing procedure..
Project description:A new composite metal-insulator-metal (MIM) system consisting of exceptionally dense non-close-packed (NCP) arrays of gold or silver nanoparticles, porous anodic aluminum oxide (PAAO), and bulk aluminum substrate interacts strongly with visible light and may become a very useful component for optical applications. The proposed MIM structure can be synthesized using accessible lithography-free chemical and physical processes (anodization and capillary force assisted colloidal particle deposition) that are suitable for the low-cost production of specialized devices. Here, we present a systematic study to determine the essential MIM structure parameters (nanoparticle size and PAAO layer thickness) for localized surface plasmon resonance (LSPR) refractometric sensing. A performance comparison was done by recording the spectra of scattered light upon angled illumination in media with different refractive indices. A clear advantage for maximizing the signal to background ratio was observed in the case of 60 and 80 nm Au nanoparticles with a PAAO thickness in a narrow range between 300 and 375 nm. Sensitivity exceeding a 200 nm peak wavelength shift per refractive index unit was found for 60 nm Au nanoparticles on approximately 500-nm-thick PAAO. The experimental observations were supported by finite-difference time-domain (FDTD) simulations.
Project description:Three different routes were used to infiltrate the pores of anodic porous alumina templates with silver nanoparticles, selected as an example of a bioactive agent. The three methods present a continuous grading from more physical to more chemical character, starting from ex situ filling of the pores with pre-existing particles, moving on to in situ formation of particles in the pores by bare calcination and ending with in situ calcination following specific chemical reactions. The resulting presence of silver inside the pores was assessed by means of energy dispersive X-ray spectroscopy and X-ray diffraction. The number and the size of nanoparticles were evaluated by scanning electron microscopy of functionalized alumina cross-sections, followed by image analysis. It appears that the best functionalization results are obtained with the in situ chemical procedure, based on the prior formation of silver ion complex by means of ammonia, followed by reduction with an excess amount of acetaldehyde. Elution of the silver content from the chemically functionalized alumina into phosphate buffer saline has also been examined, demonstrating a sustained release of silver over time, up to 15 h.
Project description:A novel process for the flexible fabrication of new-type porous anodic alumina (PAA) membranes with tunable geometric features is described. In this process, the conventional PAA template as a cost-effective nanoimprint stamp is employed to transfer the anti-structure nanopits onto aluminum sheet substrates, and the subsequent guided anodization of the pre-patterned substrates leads to new-type PAAs. By further adjusting the anode voltages of PAA stamps, imprinting pressures and guided anode voltages, a series of new-type PAAs with controlled para-pore spacing, surface topography and nanopore arrangement are achieved. The new-type PAAs provide a low-cost flexible option for the preparation of arrays with utility in photonic, electronic and magnetic devices.
Project description:Thin anodic porous alumina (tAPA) was fabricated from a 500 nm thick aluminum (Al) layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm) gold (Au) layer. The as obtained tAPA-Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA) and aminothiol (AT), and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB). At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×). The chemisorption of thiols during the first step and the formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D) technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view of the use of tAPA-Au substrates as a platform for the development of surface-enhanced Raman spectroscopy (SERS) biosensors on living cells. In the future, these tAPA-Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores.