Effect of Water Nutrient Pollution on Long-Term Corrosion of 90:10 Copper Nickel Alloy.
Ontology highlight
ABSTRACT: Due to their good corrosion resistance, copper and copper alloys such as 90:10 Cu-Ni are used extensively in high-quality marine and industrial piping systems and also in marine, urban, and industrial environments. Their corrosion loss and pitting behaviour tends to follow a bi-modal trend rather than the classic power law. Field data for 90:10 copper nickel immersed in natural seawater are used to explore the effect of water pollution and in particular the availability of critical nutrients for microbiologically induced corrosion. It is shown, qualitatively, that increased dissolved inorganic nitrogen increases corrosion predominantly in the second, long-term, mode of the model. Other, less pronounced, influences are salinity and dissolved oxygen concentration.
Project description:Operating fuel cells in alkaline environments permits the use of platinum-group-metal-free (PGM-free) catalysts and inexpensive bipolar plates, leading to significant cost reduction. Of the PGM-free catalysts explored, however, only a few nickel-based materials are active for catalyzing the hydrogen oxidation reaction (HOR) in alkali; moreover, these catalysts deactivate rapidly at high anode potentials owing to nickel hydroxide formation. Here we describe that a nickel-tungsten-copper (Ni5.2WCu2.2) ternary alloy showing HOR activity rivals Pt/C benchmark in alkaline electrolyte. Importantly, we achieved a high anode potential up to 0.3 V versus reversible hydrogen electrode on this catalyst with good operational stability over 20 h. The catalyst also displays excellent CO-tolerant ability that Pt/C catalyst lacks. Experimental and theoretical studies uncover that nickel, tungsten, and copper play in synergy to create a favorable alloying surface for optimized hydrogen and hydroxyl bindings, as well as for the improved oxidation resistance, which result in the HOR enhancement.
Project description:Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.
Project description:Copper-nickel alloys are the preferred material for desalination facilities and condensers and heat exchangers that use saltwater as a coolant. The eco-friendly compounds especially Carob fruit extract (CFE) has emerged as excessive green corrosion inhibitor for alloys. Cu-Ni alloys are widely used in various industries due to their excellent corrosion resistance. However, their performance can be compromised in aggressive environments like seawater (which is approximately 3.5% NaCl). To evaluate the corrosion behavior of these alloys and the effectiveness of corrosion inhibitors, researchers often employ weight loss, potentiodynamic polarization, and impedance spectroscopy techniques. The results showed that CFE exhibited a good ability to decrease the CR of alloys in 3.5% NaCl solution. The inhibition efficacy (IE) was reached to 92.6% and ̴ 83.2% at 300 ppm dose of CFE for Cu-10Ni alloy and Cu-30Ni alloy, respectively. The CR increases with temperature rising, but the addition of CFE reduces the CR, and the reduction depends on the dose of the extract. Adsorption of the extract gives a good fit to Langmuir, Temkin, and Freundlich isotherms model. The free adsorption energies of CFE on Cu-10Ni and Cu-30Ni alloys were 17.61 and 15.86 kJ mol-1, respectively, suggesting that CFE was weakly held to both alloys. The presence of a protective film on the alloys surface is confirmed by using scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and atomic force microscope (AFM). The study suggests that utilizing affordable, natural substances as green corrosion inhibitors presents a new strategy for promoting both resource efficiency and environmental sustainability.
Project description:Among the various methods employed in the synthesis of nanostructures, those involving high operating temperature and sharp thermal gradients often lead to the establishment of new exotic properties. Herein, we report on the formation of Cu-Ni metallic alloy nanoparticles with greatly enhanced stiffness achieved through direct-current transferred arc-thermal plasma assisted vapour-phase condensation. High pressure synchrotron X-ray powder diffraction (XRPD) at ambient temperature as well as XRPD in the temperature range 180 to 920 K, show that the thermal arc-plasma route resulted in alloy nanoparticles with much enhanced bulk modulus compared to their bulk counterparts. Such a behaviour may find an explanation in the sudden quenching assisted by the retention of a large amount of local strain due to alloying, combined with the perfect miscibility of the elemental components during the thermal plasma synthesis process.
Project description:The effect of temperature on electrochemical properties of Ni82.3Cr7Fe3Si4.5B3.2 glassy alloy in different acid proticity has been investigated utilizing AC and DC methods. Firstly, the handling of experimental data on the temperature dependence of charge transfer resistance, as well as corrosion current density permits us to determine the values of classical Arrhenius parameters as well as the thermodynamic ones considered approximately independent of temperature. This leads us to deduce a global interpretation on the phenomenon of corrosion and polarization. Secondly, the deviation to the linearity of the Arrhenius behavior and the real dependence on temperature of the thermodynamic parameters, permit us to clearly quantify the effect of the acid proticity and define, for the first time, the concept of current Arrhenius parameters and the current thermodynamic ones, as well as the modeling of the enthalpy-enthalpy compensation. Moreover, the effect of temperature can be investigated using the Vogel-Fulcher-Tammann model to reveal that the corresponding Vogel temperature has an interesting physical meaning.
Project description:A general organometallic route has been developed to synthesize Co(x)Ni(1-x) and Co(x)Fe(1-x) alloy nanoparticles with a fully tunable composition and a size of 4-10 nm with high yield. In contrast to previously reported synthesis methods using dicobalt octacarbonyl (Co(2)(CO)(8)), here the cobalt-cobalt bond in the carbonyl complex is first broken with anhydrous acetone. The acetonated compound, in the presence of iron carbonyl or nickel acetylacetonate, is necessary to obtain small composition tunable alloys. This new route and insights will provide guidelines for the wet-chemical synthesis of yet unmade bimetallic alloy nanoparticles. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11051-012-0991-5) contains supplementary material, which is available to authorized users.
Project description:Laser bed powder fusion (LPBF) is an additive manufacturing technology for the fabrication of semi-finished components directly from computer-aided design modelling, through melting and consolidation, layer upon layer, of a metallic powder, with a laser source. This manufacturing technique is particularly indicated for poor machinable alloys, such as Alloy 625. However, the unique microstructure generated could modify the resistance of the alloy to environment assisted cracking. The aim of this work was to analyze the stress corrosion cracking (SCC) and hydrogen embrittlement resistance behavior of Alloy 625 obtained by LPBF, both in as-built condition and after a standard heat treatment (grade 1). U-bend testing performed in boiling magnesium chloride at 155 and 170 °C confirmed the immunity of the alloy to SCC. However, slow strain rate tests in simulated ocean water on cathodically polarized specimens highlighted the possibility of the occurrence of hydrogen embrittlement in a specific range of strain rate and cathodic polarization. The very fine grain size and dislocation density of the thermally untreated specimens appeared to increase the hydrogen diffusion and embrittlement effect on pre-charged specimens that were deformed at the high strain rate. Conversely, heat treatment appeared to mitigate hydrogen embrittlement at high strain rates, however at the slow strain rate all the specimens showed a similar behavior.
Project description:Long-term exposure to primary air pollutants, such as sulphur dioxide (SO2) and nitrogen oxides (NOx), alters the structure and functions of forest ecosystems. Many biochemical and biogeochemical processes discriminate against the heavier isotopes in a mixture; thus, the values of δ13C and δ15N (i.e. the ratio of stable isotopes 13C to 12C and that of 15 N to 14 N, respectively) may give insights into changes in ecosystem processes and identify the immediate drivers of these changes. We studied sources of variation in the δ13C and δ15N values in the foliage of eight boreal forest C3 plants at 10 sites located at the distance of 1-40 km from the Monchegorsk nickel-copper smelter in Russia. From 1939‒2019, this smelter emitted over 14,000,000 metric tons (t) of SO2, 250,000 t of metals, primarily nickel and copper, and 140,000 t of NOx. The δ13C value in evergreen plants and the δ15N value in all plants increased near the smelter independently of the plant mycorrhizal type. We attribute the pollution-related increase in the foliar δ13C values of evergreen species mainly to direct effects of SO2 on stomatal conductance, in combination with pollution-related water stress, which jointly override the potential opposite effect of increasing ambient CO2 concentration on δ13C values. Stomatal uptake of NOx and root uptake of 15N-enriched organic N compounds and NH4+ may explain the increased foliar δ15N values and elevated foliar N concentrations, especially in the evergreen trees (Pinus sylvestris), close to Monchegorsk, where the soil inorganic N supply is reduced due to the impact of long-term SO2 and heavy metal emissions on plant biomass. We conclude that, despite the uncertainties in interpreting δ13C and δ15N responses to pollution, the Monchegorsk smelter has imposed and still imposes a great impact on C and N cycling in the surrounding N-limited subarctic forest ecosystems.
Project description:Heavy metal pollution in soils caused by mining has led to major environmental problems around the globe and seriously threatens the ecological environment. The assessment of heavy metal pollution and the local phytoremediation potential of contaminated sites is an important prerequisite for phytoremediation. Therefore, the purpose of this study was to understand the characteristics of heavy metal pollution around a copper-nickel mine tailings pond and screen local plant species that could be potentially suitable for phytoremediation. The results showed that Cd, Cu, Ni, and Cr in the soil around the tailings pond were at the heavy pollution level, Mn and Pb pollution was moderate, and Zn and As pollution was light; The positive matrix factorization (PMF) model results showed that the contributions made by industrial pollution to Cu and Ni were 62.5% and 66.5%, respectively, atmospheric sedimentation and agricultural pollution contributions to Cr and Cd were 44.6% and 42.8%, respectively, the traffic pollution contribution to Pb was 41.2%, and the contributions made by natural pollution sources to Mn, Zn, and As were 54.5%, 47.9%, and 40.0% respectively. The maximum accumulation values for Cu, Ni, Cr, Cd, and As in 10 plants were 53.77, 102.67, 91.10, 1.16 and 7.23 mg/kg, respectively, which exceeded the normal content of heavy metals in plants. Ammophila breviligulata Fernald had the highest comprehensive extraction coefficient (CEI) and comprehensive stability coefficient (CSI) at 0.81 and 0.83, respectively. These results indicate that the heavy metal pollution in the soil around the copper nickel mine tailings pond investigated in this study is serious and may affect the normal growth of plants. Ammophila breviligulata Fernald has a strong comprehensive remediation capacity and can be used as a remediation plant species for multiple metal compound pollution sites.
Project description:Reinforcing clamps made of low alloy steel from the Metz cathedral and corroded outdoors during 500 years were studied by OM, FESEM/EDS, and micro-Raman spectroscopy. The corrosion product layer is constituted of a dual structure. The outer layer is mainly constituted of goethite and lepidocrocite embedding exogenous elements such as Ca and P. The inner layer is mainly constituted of ferrihydrite. The behaviour of the inner layer under conditions simulating the wetting stage of the RH wet/dry atmospheric corrosion cycle was observed by in situ micro-Raman spectroscopy. The disappearance of ferrihydrite near the metal/oxide interface strongly suggests a mechanism of reductive dissolution caused by the oxidation of the metallic substrate and was observed for the first time in situ on an archaeological system.