Time takes space: selective effects of multitasking on concurrent spatial processing.
Ontology highlight
ABSTRACT: Many everyday activities require coordination and monitoring of complex relations of future goals and deadlines. Cognitive offloading may provide an efficient strategy for reducing control demands by representing future goals and deadlines as a pattern of spatial relations. We tested the hypothesis that multiple-task monitoring involves time-to-space transformational processes, and that these spatial effects are selective with greater demands on coordinate (metric) than categorical (nonmetric) spatial relation processing. Participants completed a multitasking session in which they monitored four series of deadlines, running on different time scales, while making concurrent coordinate or categorical spatial judgments. We expected and found that multitasking taxes concurrent coordinate, but not categorical, spatial processing. Furthermore, males showed a better multitasking performance than females. These findings provide novel experimental evidence for the hypothesis that efficient multitasking involves metric relational processing.
Project description:Research aimed at understanding the geographic context of evolutionary histories is burgeoning across biological disciplines. Recent endeavors attempt to interpret contemporaneous genetic variation in the light of increasingly detailed geographical and environmental observations. Such interest has promoted the development of phylogeographic inference techniques that explicitly aim to integrate such heterogeneous data. One promising development involves reconstructing phylogeographic history on a continuous landscape. Here, we present a Bayesian statistical approach to infer continuous phylogeographic diffusion using random walk models while simultaneously reconstructing the evolutionary history in time from molecular sequence data. Moreover, by accommodating branch-specific variation in dispersal rates, we relax the most restrictive assumption of the standard Brownian diffusion process and demonstrate increased statistical efficiency in spatial reconstructions of overdispersed random walks by analyzing both simulated and real viral genetic data. We further illustrate how drawing inference about summary statistics from a fully specified stochastic process over both sequence evolution and spatial movement reveals important characteristics of a rabies epidemic. Together with recent advances in discrete phylogeographic inference, the continuous model developments furnish a flexible statistical framework for biogeographical reconstructions that is easily expanded upon to accommodate various landscape genetic features.
Project description:Changes in the media landscape have made simultaneous usage of the computer and television increasingly commonplace, but little research has explored how individuals navigate this media multitasking environment. Prior work suggests that self-insight may be limited in media consumption and multitasking environments, reinforcing a rising need for direct observational research. A laboratory experiment recorded both younger and older individuals as they used a computer and television concurrently, multitasking across television and Internet content. Results show that individuals are attending primarily to the computer during media multitasking. Although gazes last longer on the computer when compared to the television, the overall distribution of gazes is strongly skewed toward very short gazes only a few seconds in duration. People switched between media at an extreme rate, averaging more than 4 switches per min and 120 switches over the 27.5-minute study exposure. Participants had little insight into their switching activity and recalled their switching behavior at an average of only 12 percent of their actual switching rate revealed in the objective data. Younger individuals switched more often than older individuals, but other individual differences such as stated multitasking preference and polychronicity had little effect on switching patterns or gaze duration. This overall pattern of results highlights the importance of exploring new media environments, such as the current drive toward media multitasking, and reinforces that self-monitoring, post hoc surveying, and lay theory may offer only limited insight into how individuals interact with media.
Project description:Single-cell RNAseq (scRNAseq) and paired VDJ analysis and spatial transcriptomics, we create the first comprehensive cell atlas of the healthy developing, paediatric and adult human gut, including 347,980 cells from up to 10 distinct anatomical sites. We use this data to trace the cellular composition of the gut throughout life, define novel cell markers and cell-cell interactions. We find four neuronal cell populations in the developing enteric nervous system, with expression patterns indicative of irritable bowel syndrome and Hirschsprung’s disease, and identify key cell players and communication networks initiating lymphoid structure formation in early human development.
Project description:Successful episodic memory requires binding of event details across spatial and temporal gaps. The neural processes underlying mnemonic binding, however, are not fully understood. Moreover, although acute stress is known to modulate memory, if and how stress changes mnemonic integration across time and space is unknown. To elucidate these issues, we exposed participants to a stressor or a control manipulation shortly before they completed, while electroencephalography was recorded, an encoding task that systematically varied the demands for spatial and temporal integration. Associative memory was tested 24 h later. While early event-related potentials, including the P300 and Late Positive Component, distinguished different levels of spatiotemporal discontinuity, only later Slow Waves were linked to subsequent remembering. Furthermore, theta oscillations were specifically associated with successful mnemonic binding. Although acute stress per se left mnemonic integration largely unaffected, autonomic activity facilitated object memory and glucocorticoids enhanced detail memory, indicative for mnemonic integration. At the neural level, stress amplified the effects of spatiotemporal discontinuity on early information processing. Together, our results indicate that temporal and spatial gaps recruit early neural processes, providing attentional resources. The actual binding success, however, appears to depend on later processes as well as theta power and may be shaped by major stress response systems.
Project description:Our brain seamlessly integrates distinct sensory information to form a coherent percept. However, when real-world audiovisual events are perceived, the specific brain regions and timings for processing different levels of information remain less investigated. To address that, we curated naturalistic videos and recorded functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data when participants viewed videos with accompanying sounds. Our findings reveal early asymmetrical cross-modal interaction, with acoustic information represented in both early visual and auditory regions, while visual information only identified in visual cortices. The visual and auditory features were processed with similar onset but different temporal dynamics. High-level categorical and semantic information emerged in multisensory association areas later in time, indicating late cross-modal integration and its distinct role in converging conceptual information. Comparing neural representations to a two-branch deep neural network model highlighted the necessity of early cross-modal connections to build a biologically plausible model of audiovisual perception. With EEG-fMRI fusion, we provided a spatiotemporally resolved account of neural activity during the processing of naturalistic audiovisual stimuli.
Project description:The effect of media multitasking (e.g., listening to podcasts while studying) on cognitive processes has seen mixed results thus far. To date, the tasks used in the literature to study this phenomenon have been classical paradigms primarily used to examine processes such as working memory. While perfectly valid on their own, these paradigms do not approximate a real-world volitional multitasking environment. To remedy this, as well as attempt to further validate previously found effects in the literature, we designed a novel experimental framework that mimics a desktop computer environment where a "popup" associated with a secondary task would occasionally appear. Participants could choose to attend to the popup, or to ignore it. Attending to the popup would prompt a word stem completion task, while ignoring it would continue the primary math problem verification task. We predicted that individuals who are more impulsive, more frequent media multitaskers, and individuals who prefer to multitask (quantified with the Barratt Impulsiveness Scale, a modified version of the Media Use Questionnaire, and the Multitasking Preference Inventory) would be more distracted by popups, choose to switch tasks more often and more quickly, and be slower to return to the primary task compared to those who media multitask to a lesser degree. We found that as individuals media multitask to a greater extent, they are slower to return to the previous (primary) task set and are slower to complete the primary task overall whether a popup was present or not, among other task performance measures. We found a similar pattern of effects within individuals who prefer to multitask. Our findings suggest that overall, more frequent media multitaskers show a marginal decrease in task performance, as do preferential multitaskers. Attentional impulsivity was not found to influence any task performance measures, but was positively related to a preference for multitasking. While our findings may lack generalizability due to the modifications to the Media Use Questionnaire, and this initial study is statically underpowered, this paradigm is a crucial first step in establishing a more ecologically valid method to study real-world multitasking.
Project description:We show a parity-time (PT) symmetric microwave photonic system in the optical wavelength space within a single spatial resonator, in which the gain and loss modes can perfectly overlay spatially but are distinguishable in the designated parameter space. To prove the concept, a PT-symmetric optoelectronic oscillator (OEO) in the optical wavelength space is implemented. The OEO has a single-loop architecture, with the microwave gain and loss modes carried by two optical wavelengths to form two mutually coupled wavelength-space resonators. The operation of PT symmetry in the OEO is verified by the generation of a 10-GHz microwave signal with a low phase noise of -129.3 dBc/Hz at 10-kHz offset frequency and small sidemodes of less than -66.22 dBc/Hz. Compared with a conventional spatial PT-symmetric system, a PT-symmetric system in the wavelength space features a much simpler configuration, better stability and greater resilience to environmental interferences.
Project description:BackgroundA spatial and temporal study of the distribution of facility-based deliveries can identify areas of low and high facility usage and help devise more targeted interventions to improve delivery outcomes. Developing countries like Bangladesh face considerable challenges in reducing the maternal mortality ratio to the targets set by the Sustainable Development Goals. Recent studies have already identified that the progress of reducing maternal mortality has stalled. Giving birth in a health facility is one way to reduce maternal mortality.MethodsFacility delivery data from a demographic surveillance site was analyzed at both village and Bari (comprising several households with same paternal origins) level to understand spatial and temporal heterogeneity. Global spatial autocorrelation was detected using Moran's I index while local spatial clusters were detected using the local Getis G i * statistics. In addition, space-time scanning using a discrete Poisson approach facilitated the identification of space-time clusters. The likelihood of delivering at a facility when located inside a cluster was calculated using log-likelihood ratios.ResultsThe three cluster detection approaches detected significant spatial and temporal heterogeneity in the distribution of facility deliveries in the study area. The hot and cold spots indicated contiguous and relocation type diffusion and increased in number over the years. Space-time scanning revealed that when a parturient woman is located in a Bari inside the cluster, the likelihood of delivering at a health facility increases by twenty-seven times.ConclusionsSpatiotemporal studies to understand delivery patterns are quite rare. However, in resource constraint countries like Bangladesh, detecting hot and cold spot areas can aid in the detection of diffusion centers, which can be targeted to expand regions with high facility deliveries. Places and periods with reduced health facility usages can be identified using various cluster detection techniques, to assess the barriers and facilitators in promoting health facility deliveries.
Project description:Organ development is guided by a space-time landscape that constraints cell behavior. This landscape is challenging to characterize for the hair follicle - the most abundant mini organ - due to its complex microscopic structure and asynchronous development. We developed 3DEEP, a tissue clearing and spatial transcriptomic strategy for characterizing tissue blocks up to 400 µm in thickness. We captured 371 hair follicles at different stages of organogenesis in 1 mm3 of skin of a 12-hour-old mouse with 6 million transcripts from 81 genes. From this single time point, we deconvoluted follicles by age based on whole-organ molecular pseudotimes to animate a stop-motion 3D atlas of follicle development along its trajectory. We defined molecular stages for hair follicle organogenesis and characterized the order of emergence for its structures, differential signaling dynamics at its top and bottom, morphogen shifts preceding and accompanying structural changes, and series of structural changes leading to the formation of its canal and opening. We further found that hair follicle stem cells and their niche are established and stratified early in organogenesis, before the formation of the hair bulb. Overall, this work demonstrates the power of increased depth of spatial transcriptomics to provide a four-dimensional analysis of organogenesis.
Project description:IntroductionSpatial targeting is advocated as an effective method that contributes for achieving tuberculosis control in high-burden countries. However, there is a paucity of studies clarifying the spatial nature of the disease in these countries. This study aims to identify the location, size and risk of purely spatial and space-time clusters for high occurrence of tuberculosis in Gurage Zone, Southern Ethiopia during 2007 to 2016.Materials and methodsA total of 15,805 patient data that were retrieved from unit TB registers were included in the final analyses. The spatial and space-time cluster analyses were performed using the global Moran's I, Getis-Ord [Formula: see text] and Kulldorff's scan statistics.ResultsEleven purely spatial and three space-time clusters were detected (P <0.001).The clusters were concentrated in border areas of the Gurage Zone. There were considerable spatial variations in the risk of tuberculosis by year during the study period.ConclusionsThis study showed that tuberculosis clusters were mainly concentrated at border areas of the Gurage Zone during the study period, suggesting that there has been sustained transmission of the disease within these locations. The findings may help intensify the implementation of tuberculosis control activities in these locations. Further study is warranted to explore the roles of various ecological factors on the observed spatial distribution of tuberculosis.