Rapid Prototyping of Slot Die Devices for Roll to Roll Production of EL Fibers.
Ontology highlight
ABSTRACT: There is a growing interest in fibers supporting optoelectrical properties for textile and wearable display applications. Solution-processed electroluminescent (EL) material systems can be continuously deposited onto fiber or yarn substrates in a roll-to-roll process, making it easy to scale manufacturing. It is important to have precise control over layer deposition to achieve uniform and reliable light emission from these EL fibers. Slot-die coating offers this control and increases the rate of EL fiber production. Here, we report a highly adaptable, cost-effective 3D printing model for developing slot dies used in automatic coating systems. The resulting slot-die coating system enables rapid, reliable production of alternating current powder-based EL (ACPEL) fibers and can be adapted for many material systems. The benefits of this system over dip-coating for roll-to-roll production of EL fibers are demonstrated in this work.
Project description:Polymer thin films with a cross-web gradient structure is a burgeoning area of research, having received more attention in the last two decades, for improvements in the performance and material properties. Such patterned films have been fabricated using several techniques, but in practice these techniques are non-scalable, material-dependent, wasteful, and not highly efficient. Slot die coating, a well-known scalable manufacturing process, is used to fabricate gradient polymer thin films which will be investigated herein. By incorporating slot die with the custom roll-to-roll imaging system, gradient thin films are successfully fabricated by forcing two fluidic materials into the slot die simultaneously and by manipulating the viscous, diffusive, and inertial forces. The materials will be allowed to intermix, with the aim of having approximately a 50% mix along the centerline of any two contiguous stripes. Moreover, several characterizations such as FTIR, UV-vis spectroscopy, and SEM are performed to assess the quality of the gradient polymer thin films. The gradient structure fabricated using functional and nonfunctional materials has successfully improved the functional properties compared to fully blended two materials. This work will provide an understanding of the mechanisms to obtain gradient polymer thin-film structures that exhibit the desired geometric structure and performance.
Project description:We fabricate a type of back-contact perovskite solar cell based on 1.5 μm-width grooves that are embossed into a plastic film whose opposing "walls" are selectively coated with either n- or p-type contacts. A perovskite precursor solution is then deposited into the grooves, creating individual photovoltaic devices. Each groove device is series-connected to its neighbors, creating minimodules consisting of hundreds of connected grooves. Here, we report on the fabrication of groove-based devices using slot-die coating to deposit the perovskite precursor and explore the structure of the perovskite in the grooves using a range of microscopy and spectroscopy techniques. Significantly, our devices do not contain any expensive or scarce elements such as indium, indicating that this technology is both sustainable and low-cost. Furthermore, all coating processes explored here were performed using roll-to-roll processing techniques. Our technology is therefore completely scalable and is consistent with high-throughput, low-cost manufacturing.
Project description:We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30-70 Ohm/square), optical transmittance values (89-90%), and haze (0.5-1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle.
Project description:The grand vision of manufacturing large-area emissive devices with low-cost roll-to-roll coating methods, akin to how newspapers are produced, appeared with the emergence of the organic light-emitting diode about 20 years ago. Today, small organic light-emitting diode displays are commercially available in smartphones, but the promise of a continuous ambient fabrication has unfortunately not materialized yet, as organic light-emitting diodes invariably depend on the use of one or more time- and energy-consuming process steps under vacuum. Here we report an all-solution-based fabrication of an alternative emissive device, a light-emitting electrochemical cell, using a slot-die roll-coating apparatus. The fabricated flexible sheets exhibit bidirectional and uniform light emission, and feature a fault-tolerant >1-μm-thick active material that is doped in situ during operation. It is notable that the initial preparation of inks, the subsequent coating of the constituent layers and the final device operation all could be executed under ambient air.
Project description:The optimization of multicomponent emissive layer (EML) deposition by slot-die coating for organic light-emitting diodes (OLEDs) is presented. In the investigated EMLs, the yellow-green iridium complex (Ir) was doped in two types of host: a commonly used mixture of poly(N-vinylcarbazole) (PVK) with oxadiazole derivative (PBD) or PVK with thermally activated delayed fluorescence-assisted dopant (10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10H-spiro[acridine-9,9'-fluorene], SpiroAC-TRZ). In this article, OLEDs with EML prepared in air by slot-die coating, facilitating industrial manufacturing, are confronted with those with spin-coated EML in nitrogen. OLEDs based on PVK:PBD + 2 wt.% Ir-dopant exhibit comparable performance: ~13 cd A-1, regardless of the used method. The highest current efficiency (21 cd A-1) is shown by OLEDs based on spin-coated PVK with 25 wt.% SpiroAC-TRZ and 2 wt.% Ir-dopant. It is three times higher than the efficiency of OLEDs with slot-die-coated EML in air. The performance reduction, connected with the adverse oxygen effect on the energy transfer from TADF to emitter molecules, is minimized by the rapid EML annealing in a nitrogen atmosphere. This post-treatment causes more than a doubling of the OLED efficiency, from 7 cd A-1 to over 15 cd A-1. Such an approach may be easily implemented in other printing techniques and result in a yield enhancement.
Project description:The demonstration of photovoltaic devices with high power conversion efficiencies using low cost perovskite materials hints at the possibility of dramatically lowering the cost of solar energy. Key to further exploiting the potential of these materials is developing rapid processing techniques that can be used to deliver lower cost high throughput manufacture. This work details the development of low viscosity rapid drying perovskite formulations designed to give high quality solar films when slot-die coated on flexible roll-to-roll compatible substrates. A single step slot-die compatible perovskite ink based on an acetonitrile/methylamine solvent system utilizing a chloride additive is developed, resulting in large area perovskite films from slot-die coating under ambient conditions. The drying conditions for the perovskite film are optimized and fast (<10 min), low temperature (<120 °C) drying of slot-die coated films on flexible substrates are demonstrated and result in high performance devices.
Project description:Current approaches to create zirconium-based metal-organic framework (MOF) fabric composites for catalysis, water purification, wound healing, gas sorption, and other applications often rely on toxic solvents, long reaction/post processing times, and batch methods hindering process scalability. Here, a novel mechanism was reported for rapid UiO-66-NH2 synthesis in common low-boiling-point solvents (water, ethanol, and acetic acid) and revealed acid-base chemistry promoting full linker dissolution and vapor-based crystallization. The mechanism enabled scalable roll-to-roll production of mechanically resilient UiO-66-NH2 fabrics with superior chemical protective capability. Solvent choice and segregated spray delivery of organic linker and metal salt MOF precursor solutions allowed for rapid MOF nucleation on the fiber surface and decreased the energy and time needed for post-processing, producing an activated composite in less than 165 min, far outpacing conventional MOF-fabric synthesis approaches. The MOF-fabric hydrolyzed and blocked permeation of the chemical warfare agent soman, outperforming the protection-standard activated carbon cloth. This work presents both chemical insights into Zr-MOF powder and fabric composite formation by a rapid, industrially relevant approach and demonstrates its practicality and affordability for high-performing personal protective equipment.
Project description:The fabrication of perovskite solar cells in an N-I-P structure with compact titanium dioxide blocking, mesoporous titanium dioxide scaffold, single-step perovskite and hole-transport layers deposited using the slot-die coating technique is reported. Devices on fluorine-doped tin oxide-coated glass substrates with evaporated gold top contacts and four slot-die-coated layers are demonstrated, and best cells reach stabilized power conversion efficiencies of 7%. This work demonstrates the suitability of slot-die coating for the production of layers within this perovskite solar cell stack and the potential to transfer to large area and roll-to-roll manufacturing processes.
Project description:Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.
Project description:Highly flexible silver nanowire-based transparent conductive films (AgNWs TCFs) were large-scale fabricated by slot-die coating AgNWs inks on a flexible polyethylene terephthalate (PET) substrate, and further fabricated into a transparent film heater. Appropriate flow rate, coating speed, and AgNWs concentration allow the construction of the 15 cm × 15 cm AgNW TCFs with a sheet resistance (Rs) of less than 20 Ω/sq, a transmittance (T) at 550 nm higher than 95%, and a haze less than 3.5%. The resultant AgNW TCFs heater possesses high uniformity and superior mechanical stability and can reach a Joule heating temperature of 104 °C with a voltage of 12 V. The slot-die coating method has great potential for large-scale production of AgNW based film heaters promisingly used in window defrost and deicer systems.