Oviposition behavior of Haemagogus leucocelaenus (Diptera: culicidae), a vector of wild yellow fever in Brazil.
Ontology highlight
ABSTRACT: Haemagogus leucocelaenus, which is considered a major vector of wild yellow fever, exhibits acrodendrophilic habits and mainly deposits its eggs in treeholes and bamboo internodes. The selection of nursery sites is essential in the life history and reproductive success of mosquitoes. The present work investigated the preferred oviposition height and period of Hg. leucocelaenus in an Atlantic forest area in Rio de Janeiro. Sampling was performed using oviposition traps that were placed on plant material at 0, 2, 4, 6, and 8 m above the ground, from August 2015 to July 2016. Eggs were more abundant during October and May, and the height of traps placement had no significant effect on the eggs number indicating that Hg. leucocelaenus explores different levels of forest habitats, a behavior that may favor the transmission of pathogens among arboreal animals including primates and humans. The findings of the present study are discussed from an ecological and epidemiological point of view.
Project description:The present study aims to analyze the effectiveness of ovitraps in the capture of Hg leucocelaenus eggs and evaluate the influence of the dry and rainy seasons on their abundance and hatching rates. The eggs were collected in the Atlantic Forest of State of Rio de Janeiro, Brazil, an area in which the yellow fever virus is known to circulate. We distributed 15 ovitraps in three sampling points, with five ovitraps per point. We distributed 15 ovitraps in three sampling points on trees within a forested area, which were sequentially numbered, monitored, and replaced every two weeks from October 2016 to April 2018. There was a high dominance of Hg. leucocelaenus eggs (98.4%) and a variation in egg hatching rates between the wet and dry seasons. These rates were 1.5 times higher in the rainy season than in the dry season. The rainy season also showed a greater abundance of eggs and higher values of ovitrap positivity and egg density indexes in the installed ovitraps. The abundances of Hg. leucocelaenus eggs were positively correlated with mean monthly temperature and air humidity but not significantly correlated with accumulated precipitation. These results, as well as their implications for the possible use of ovitraps to monitor vector mosquitoes of yellow fever in the study region, are discussed.
Project description:IntroductionYellow fever continues to be a problem in sub-Saharan Africa with repeated epidemics occurring. The mosquito Aedes bromeliae is a major vector of yellow fever, but it cannot be readily differentiated from its non-vector zoophilic sister species Ae. lilii using morphological characters. Genetic differences have been reported between anthropophilic Ae. bromeliae and zoophilic Ae. lilii and between forest and domestic populations. However, due to the application of different molecular markers and non-overlapping populations employed in previous studies, interpretation of species delimitation is unclear.Methodology/principle findingsDNA sequences were generated from specimens of Ae. simpsoni s.l. from the Republic of Benin, Tanzania and Uganda for two nuclear genes apolipophorin 2 (apoLp2) and cytochrome p450 (CYPJ92), the ribosomal internal transcribed spacer region (ITS) and the mitochondrial cytochrome c oxidase (COI) barcoding region. Nuclear genes apoLp2 and CYPJ92 were unable to differentiate between species Ae. bromeliae and Ae. lilii due to ancestral lineage sorting, while ITS sequence data provided clear topological separation on a phylogeny. The standard COI barcoding region was shown to be subject to species introgression and unable to clearly distinguish the two taxa. Here we present a reliable direct PCR-based method for differentiation of the vector species Ae. bromeliae from its isomorphic, sympatric and non-biomedically important sister taxon, Ae. lilii, based on the ITS region. Using molecular species verification, we describe novel immature habitats for Ae. lilii and report both sympatric and allopatric populations. Whereas only Ae. lilii is found in the Republic of Benin and only Ae. bromeliae in Tanzania, both species are sympatric in Uganda.Conclusions/significanceOur accurate identification method will allow informed distribution and detailed ecological studies that will facilitate assessment of arboviral disease risk and development of future targeted vector control.
Project description:BackgroundAedes aegypti is associated with dengue, yellow fever, chikungunya and Zika viruses. This vector is widespread in tropical and subtropical areas, and can also occur in temperate areas at higher latitudes. The geographical distribution of Ae. aegypti continues to spread due to human activities. This is the first study to examine the population genetic structure of this insect in El Salvador, Central America.MethodsAedes aegypti larvae were collected from six geographical regions of El Salvador: Sonsonate, San Salvador, Chalatenango, Usulután, San Miguel and Morazán. Larvae were raised into adults, identified and preserved. Two molecular markers, amplified fragment length polymorphism (AFLP) genotyping and mitochondrial DNA (mtDNA) cytochrome c oxidase subunit 1 (cox1) sequencing, were used to investigate population genetic structure.ResultsStructure analysis found two genetically distinct populations; one occurs predominantly in the north and west, and a mix of two populations occurs in the southeast of the country. Genetic distances ranged from 0.028 (2.8%) to 0.091 (9%), and an AMOVA analysis found 11% variation between populations. Mitochondrial DNA cox1 sequences produced a haplotype network which consisted of 3 haplogroups and 10 haplotypes. Haplogroup 1 had low haplotype and nucleotide diversity and was found in all six regions. Haplogroups 2 and 3 had higher haplotype and nucleotide diversity, and were less abundant; haplogroup 3 was found in only 3 of the six regions studied. Bottleneck tests were significant, suggesting that populations had undergone a recent bottleneck. A maximum likelihood tree, which combined samples from this study with available sequences in GenBank, suggested that two genetically divergent lineages had been introduced.ConclusionsRelatively high genetic diversity was found in Ae. aegypti in El Salvador. The mtDNA sequences clustered into two lineages, as found in previous studies. Samples in El Salvador may be introduced from regions in North and South America where past eradication was not complete. Future study of genotypes in surrounding countries would provide a more complete picture of the movement and potential source of introductions of this vector. The distribution of the lineages and haplogroups may further our understanding of the epidemiology of Ae. aegypti associated vector borne diseases.
Project description:Culicid species, which include potential vectors of yellow fever, are diverse and abundant, with species commonly co-occurring in certain sites. Studying these species can provide important insights into their vector potential and, consequently, epizootic cycles of arboviruses carried about by these vectors. Here, we evaluated the vertical distribution and temporal segregation of mosquito oviposition with emphasis on arbovirus vectors in a fragment of the Atlantic Forest in Casimiro de Abreu, Rio de Janeiro, Brazil. Two sampling points were selected: Fazenda Três Montes and the Reserva Natural de Propriedade Privada Morro Grande. Collections were carried out at two sites using 10 ovitraps installed on the vegetation cover at different heights (0, 2, 4, 6, and 8 m above ground level) and monitored monthly from July 2018 to December 2020. The hypotheses of temporal and vertical stratification were tested through a PERMANOVA, and the relationship of each species with the vertical distribution was evaluated individually through a correlation analysis. We collected a total of 3075 eggs, including four species of medical importance: Haemagogus leucocelaenus (n = 1513), Haemagogus janthinomys (n = 16), Aedes albopictus (n = 1097), and Aedes terrens (n = 449). We found that Hg. leucocelaenus had a positive relationship with height, exhibiting behavior that appears to benefit from higher heights. The abundance of Ae. terrens seemed to follow Hg. leucocelaenus, although we did not find a relationship with height for the former species. On the other hand, Ae. albopictus exhibited a negative relationship with height, becoming absent or outnumbered at higher strata. Our study site has already presented evidence of recent transmission of the wild yellow fever virus, supporting the need to carefully monitor the emergence of febrile diseases among residents in the surrounding areas and the local population.
Project description:Abstract Ferritin is required for iron storage in vertebrates and for iron transport and storage in invertebrates, specifically insects. Classical ferritins consist of 24 subunits configured as a polyhedron wherein iron is held. The 24 subunits include light and heavy chains, each with specific functions. Several homologues of the light and heavy chains have been sequenced and studied in insects. In addition to iron transport and storage, ferritin has a role in dietary iron absorption, and functions as a protective agent preventing iron overload, decreasing oxidative stress, and reducing infection in these animals. The expression profile and regulation of a second ferritin light chain homologue (LCH2) in Aedes aegypti [Linnaeus (Diptera: Culicidae), yellow fever mosquito] was characterized in cells, animal developmental stages, and tissues post bloodmeal (PBM) by real-time PCR and immunoblot. Two previously studied ferritin subunits from Ae. aegypti, HCH and LCH1, along with LCH2 were immunoprecipitated and analyzed by mass spectrometry. The three Ae. aegypti ferritin subunits, HCH, LCH1, and LCH2, have different expression profiles and regulation with iron exposure, developmental stage, and tissue response PBM. Ae. aegypti expresses multiple and unique ferritin light chain subunits. Ae. aegypti, the vector for Zika, Dengue, and yellow fever, requires iron for oogenesis that is transported and stored in ferritin; this vector expresses a second light chain ferritin subunit homologue unlike any other species in which ferritin has been studied to date.
Project description:Dengue, yellow fever, and Zika are viruses transmitted by yellow fever mosquito, Aedes aegypti [Linnaeus (Diptera: Culicidae)], to thousands of people each year. Mosquitoes transmit these viruses while consuming a blood meal that is required for oogenesis. Iron, an essential nutrient from the blood meal, is required for egg development. Mosquitoes receive a high iron load in the meal; although iron can be toxic, these animals have developed mechanisms for dealing with this load. Our previous research has shown iron from the blood meal is absorbed in the gut and transported by ferritin, the main iron transport and storage protein, to the ovaries. We now report the distribution of iron and ferritin in ovarian tissues before blood feeding and 24 and 72 h post-blood meal. Ovarian iron is observed in specific locations. Timing post-blood feeding influences the location and distribution of the ferritin heavy-chain homolog, light-chain homolog 1, and light-chain homolog 2 in ovaries. Understanding iron deposition in ovarian tissues is important to the potential use of interference in iron metabolism as a vector control strategy for reducing mosquito fecundity, decreasing mosquito populations, and thereby reducing transmission rates of vector-borne diseases.
Project description:Cryptic species complexes are common among anophelines. Previous phylogenetic analysis based on the complete mtDNA COI gene sequences detected paraphyly in the Neotropical malaria vector Anopheles marajoara. The "Folmer region" detects a single taxon using a 3% divergence threshold.To test the paraphyletic hypothesis and examine the utility of the Folmer region, genealogical trees based on a concatenated (white + 3' COI sequences) dataset and pairwise differentiation of COI fragments were examined. The population structure and demographic history were based on partial COI sequences for 294 individuals from 14 localities in Amazonian Brazil. 109 individuals from 12 localities were sequenced for the nDNA white gene, and 57 individuals from 11 localities were sequenced for the ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2).Distinct A. marajoara lineages were detected by combined genealogical analysis and were also supported among COI haplotypes using a median joining network and AMOVA, with time since divergence during the Pleistocene (<100,000 ya). COI sequences at the 3' end were more variable, demonstrating significant pairwise differentiation (3.82%) compared to the more moderate 2.92% detected by the Folmer region. Lineage 1 was present in all localities, whereas lineage 2 was restricted mainly to the west. Mismatch distributions for both lineages were bimodal, likely due to multiple colonization events and spatial expansion (~798-81,045 ya). There appears to be gene flow within, not between lineages, and a partial barrier was detected near Rio Jari in Amapá state, separating western and eastern populations. In contrast, both nDNA data sets (white gene sequences with or without the retention of the 4th intron, and ITS2 sequences and length) detected a single A. marajoara lineage.Strong support for combined data with significant differentiation detected in the COI and absent in the nDNA suggest that the divergence is recent, and detectable only by the faster evolving mtDNA. A within subgenus threshold of >2% may be more appropriate among sister taxa in cryptic anopheline complexes than the standard 3%. Differences in demographic history and climatic changes may have contributed to mtDNA lineage divergence in A. marajoara.
Project description:The risk of the emergence and reemergence of zoonoses is high in regions that are under the strong influence of anthropogenic actions, as they contribute to the risk of vector disease transmission. Yellow fever (YF) is among the main pathogenic arboviral diseases in the world, and the Culicidae Aedes albopictus has been proposed as having the potential to transmit the yellow fever virus (YFV). This mosquito inhabits both urban and wild environments, and under experimental conditions, it has been shown to be susceptible to infection by YFV. In this study, the vector competence of the mosquito Ae. albopictus for the YFV was investigated. Female Ae. albopictus were exposed to non-human primates (NHP) of the genus Callithrix infected with YFV via a needle inoculation. Subsequently, on the 14th and 21st days post-infection, the legs, heads, thorax/abdomen and saliva of the arthropods were collected and analyzed by viral isolation and molecular analysis techniques to verify the infection, dissemination and transmission. The presence of YFV was detected in the saliva samples through viral isolation and in the head, thorax/abdomen and legs both by viral isolation and by molecular detection. The susceptibility of Ae. albopictus to YFV confers a potential risk of reemergence of urban YF in Brazil.