Unknown

Dataset Information

0

Identification of Arbuscular Mycorrhiza Fungi Responsive microRNAs and Their Regulatory Network in Maize.


ABSTRACT: Maize can form symbiotic relationships with arbuscular mycorrhiza (AM) fungus to increase productivity and resistance, but the miRNAs in maize responsible for this process have not been discovered. In this study, 155 known and 28 novel miRNAs were identified by performing high-throughput sequencing of sRNA in maize roots colonized by AM fungi. Similar to the profiles in other AM-capable plants, a large proportion of identified maize miRNAs were 24 nt in length. Fourteen and two miRNAs were significantly down- and up-regulated in response to AM fungus Glomus intraradices inoculation, respectively, suggesting potential roles of these miRNAs in AM symbiosis. Interestingly, 12 of 14 significantly down-regulated known maize miRNAs belong to the miR399 family, which was previously reported to be involved in the interaction between Medicago truncatula and AM fungi. This result indicated that the miR399 family should regulate AM symbiosis conservatively across different plant lineages. Pathway and network analyses showed that the differentially expressed miRNAs might regulate lipid metabolism and phosphate starvation response in maize during the symbiosis process via their target genes. Several members of the miR399 family and the miR397 family should be involved in controlling the fatty acid metabolism and promoting lipid delivering from plants to AM fungi. To the best of our knowledge, this is the first report on miRNAs mediating fatty acids from plant to AM fungi. This study provides insight into the regulatory roles of miRNAs in the symbiosis between plants and AM fungi.

SUBMITTER: Xu Y 

PROVIDER: S-EPMC6214007 | biostudies-other | 2018 Oct

REPOSITORIES: biostudies-other

altmetric image

Publications

Identification of Arbuscular Mycorrhiza Fungi Responsive microRNAs and Their Regulatory Network in Maize.

Xu Yunjian Y   Zhu Suwen S   Liu Fang F   Wang Wei W   Wang Xuewen X   Han Guomin G   Cheng Beijiu B  

International journal of molecular sciences 20181016 10


Maize can form symbiotic relationships with arbuscular mycorrhiza (AM) fungus to increase productivity and resistance, but the miRNAs in maize responsible for this process have not been discovered. In this study, 155 known and 28 novel miRNAs were identified by performing high-throughput sequencing of sRNA in maize roots colonized by AM fungi. Similar to the profiles in other AM-capable plants, a large proportion of identified maize miRNAs were 24 nt in length. Fourteen and two miRNAs were signi  ...[more]

Similar Datasets

| S-EPMC4814767 | biostudies-literature
| S-EPMC5559270 | biostudies-literature
| S-EPMC6709666 | biostudies-literature
| S-EPMC4993810 | biostudies-literature