Unknown

Dataset Information

0

Approaching Bilinear Multipliers via a Functional Calculus.


ABSTRACT: We propose a framework for bilinear multiplier operators defined via the (bivariate) spectral theorem. Under this framework, we prove Coifman-Meyer type multiplier theorems and fractional Leibniz rules. Our theory applies to bilinear multipliers associated with the discrete Laplacian on Zd, general bi-radial bilinear Dunkl multipliers, and to bilinear multipliers associated with the Jacobi expansions.

SUBMITTER: Wrobel B 

PROVIDER: S-EPMC6294343 | biostudies-other | 2018

REPOSITORIES: biostudies-other

altmetric image

Publications

Approaching Bilinear Multipliers via a Functional Calculus.

Wróbel Błażej B  

Journal of geometric analysis 20180130 4


We propose a framework for bilinear multiplier operators defined via the (bivariate) spectral theorem. Under this framework, we prove Coifman-Meyer type multiplier theorems and fractional Leibniz rules. Our theory applies to bilinear multipliers associated with the discrete Laplacian on Z d , general bi-radial bilinear Dunkl multipliers, and to bilinear multipliers associated with the Jacobi expansions. ...[more]

Similar Datasets

| S-EPMC7762979 | biostudies-literature
| S-EPMC11785531 | biostudies-literature
| S-EPMC3531484 | biostudies-literature
| S-EPMC4759375 | biostudies-literature
| S-EPMC10324660 | biostudies-literature
| S-EPMC11870030 | biostudies-literature
| S-EPMC8481336 | biostudies-literature
| S-EPMC10119103 | biostudies-literature
| S-EPMC6947321 | biostudies-literature
| S-EPMC7125230 | biostudies-literature