Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis
Ontology highlight
ABSTRACT: Viral infection triggers host innate immune responses, which primarily include the activation of type I interferon (IFN) signaling and inflammasomes. Here we report that Zika virus (ZIKV) infection triggers NLRP3 inflammasome activation, which is further enhanced by viral non-structural protein NS1 to benefit its replication. NS1 recruits the host deubiquitinase USP8 to cleave K11-linked poly-ubiquitin chains from caspase-1 at Lys134, thus inhibiting the proteasomal degradation of caspase-1. The enhanced stabilization of caspase-1 by NS1 promotes the cleavage of cGAS, which recognizes mitochondrial DNA release and initiates type I IFN signaling during ZIKV infection. NLRP3 deficiency increases type I IFN production and strengthens host resistance to ZIKV in vitro and in vivo. Taken together, our work unravels a novel antagonistic mechanism employed by ZIKV to suppress host immune response by manipulating the interplay between inflammasome and type I IFN signaling, which might guide the rational design of therapeutics in the future.
Project description:Viral infection triggers host innate immune responses, which primarily include the activation of type I interferon (IFN) signaling and inflammasomes. Here, we report that Zika virus (ZIKV) infection triggers NLRP3 inflammasome activation, which is further enhanced by viral non-structural protein NS1 to benefit its replication. NS1 recruits the host deubiquitinase USP8 to cleave K11-linked poly-ubiquitin chains from caspase-1 at Lys134, thus inhibiting the proteasomal degradation of caspase-1. The enhanced stabilization of caspase-1 by NS1 promotes the cleavage of cGAS, which recognizes mitochondrial DNA release and initiates type I IFN signaling during ZIKV infection. NLRP3 deficiency increases type I IFN production and strengthens host resistance to ZIKVin vitro and in vivo Taken together, our work unravels a novel antagonistic mechanism employed by ZIKV to suppress host immune response by manipulating the interplay between inflammasome and type I IFN signaling, which might guide the rational design of therapeutics in the future.
Project description:T cells play an important role in the development of focal segmental glomerulosclerosis (FSGS). The mechanism underlying such T cell-based kidney disease, however, remains elusive. Here the authors report that activated CD8 T cells elicit renal inflammation and tissue injury via releasing miR-186-5p-enriched exosomes. Continuing the cohort study identifying the correlation of plasma level of miR-186-5p with proteinuria in FSGS patients, it is demonstrated that circulating miR-186-5p is mainly derived from activated CD8 T cell exosomes. Renal miR-186-5p, which is markedly increased in FSGS patients and mice with adriamycin-induced renal injury, is mainly delivered by CD8 T cell exosomes. Depleting miR-186-5p strongly attenuates adriamycin-induced mouse renal injury. Supporting the function of exosomal miR-186-5p as a key circulating pathogenic factor, intravenous injection of miR-186-5p or miR-186-5p-containing T cell exosomes results in mouse renal inflammation and tissue injury. Tracing the injected T cell exosomes shows their preferential distribution in mouse renal tubules, not glomerulus. Mechanistically, miR-186-5p directly activates renal tubular TLR7/8 signal and initiates tubular cell apoptosis. Mutating the TLR7-binding sequence on miR-186-5p or deleting mouse TLR7 largely abolishes renal tubular injuries induced by miR-186-5p or adriamycin. These findings reveal a causative role of exosomal miR-186-5p in T cell-mediated renal dysfunction.
Project description:The host cytoskeleton plays crucial roles in various stages of virus infection, including viral entry, transport, replication, and release. However, the specific mechanisms by which intermediate filaments are involved in orthoflavivirus infection have not been well understood. In this study, we demonstrate that the Japanese encephalitis virus (JEV) remodels the vimentin network, resulting in the formation of cage-like structures that support viral replication. Mechanistically, JEV NS1 and NS1' proteins induce the translocation of CDK1 from the nucleus to the cytoplasm and interact with it, leading to the phosphorylation of vimentin at Ser56. This phosphorylation event recruits PLK1, which further phosphorylates vimentin at Ser83. Consequently, these phosphorylation modifications convert the typically filamentous vimentin into non-filamentous "particles" or "squiggles." These vimentin "particles" or "squiggles" are then transported retrogradely along microtubules to the endoplasmic reticulum, where they form cage-like structures. Notably, NS1' is more effective than NS1 in triggering the CDK1-PLK1 cascade response. Overall, our study provides new insights into how JEV NS1 and NS1' proteins manipulate the vimentin network to facilitate efficient viral replication.ImportanceJapanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus that causes severe encephalitis in humans, particularly in Asia. Despite the availability of a safe and effective vaccine, JEV infection remains a significant public health threat due to limited vaccination coverage. Understanding the interactions between JEV and host proteins is essential for developing more effective antiviral strategies. In this study, we investigated the role of vimentin, an intermediate filament protein, in JEV replication. Our findings reveal that JEV NS1 and NS1' proteins induce vimentin rearrangement, resulting in the formation of cage-like structures that envelop the viral replication factories (RFs), thus facilitating efficient viral replication. Our research highlights the importance of the interplay between the cytoskeleton and orthoflavivirus, suggesting that targeting vimentin could be a promising approach for the development of antiviral strategies to inhibit JEV propagation.
Project description:Interferon (IFN) system is considered as the first defense line against viral infection, and it has been extensively studied in vertebrates from fish to mammals. In invertebrates, Vagos from arthropod and IFN-like protein (CgIFNLP) from Crassostrea gigas appeared to function as IFN-like antiviral cytokines. In the present study, the CgIFNLP protein in hemocytes was observed to increase after Poly (I:C) stimulation. After CgIFNLP was knocked down by RNAi, the mRNA expression of IFN-stimulated genes (CgISGs) was significantly inhibited. Both cyclic GMP-AMP synthase (CgcGAS) and stimulator of interferon gene (CgSTING) identified from oyster were able to recognize the double-stranded nucleic acid [Poly (I:C) and dsDNA] and expressed at high level after Poly (I:C) stimulation. The expression of CgIFNLP and interferon regulatory factors (CgIRF1/8) and the nuclear translocation of CgIRF8 were all suppressed in CgcGAS-RNAi or CgSTING-RNAi oysters after Poly (I:C) stimulation. The expression level of CgSTING and TANK binding kinase1 (CgTBK1) did not decrease in CgcGAS-RNAi oysters. After CgSTING was knocked down, the high expression of CgTBK1 induced by Poly (I:C) was prevented significantly. These results indicated that there was a primitive IFN-like antiviral mechanism dependent on the cGAS/STING-TBK1-IRFs regulatory axis in mollusks, which was different from the classic cGAS-STING-TBK1 signal pathway in mammals.
Project description:It has been recently recognized that the DNA sensing innate immune cGAS-STING pathway exerts an IFN-independent antiviral function; however, whether and how chicken STING (chSTING) exerts such an IFN-independent antiviral activity is still unknown. Here, we showed that chSTING exerts an antiviral activity in HEK293 cells and chicken cells, independent of IFN production. chSTING was able to trigger cell apoptosis and autophagy independently of IFN, and the apoptosis inhibitors, rather than autophagy inhibitors, could antagonize the antiviral function of chSTING, suggesting the involvement of apoptosis in IFN-independent antiviral function. In addition, chSTING lost its antiviral function in IRF7-knockout chicken macrophages, indicating that IRF7 is not only essential for the production of IFN, but also participates in the other activities of chSTING, such as the apoptosis. Collectively, our results showed that chSTING exerts an antiviral function independent of IFN, likely via apoptosis.
Project description:B-cell epitope sequences from Zika virus (ZIKV) NS1 protein have been identified using epitope prediction tools. Mapping these sequences onto the NS1 surface reveals two major conformational epitopes and a single linear one. Despite an overall average sequence identity of ca. 55% between the NS1 from ZIKV and the four dengue virus (DENV) serotypes, epitope sequences were found to be highly conserved. Nevertheless, nonconserved epitope-flanking residues are responsible for a dramatically divergent electrostatic surface potential on the epitope regions of ZIKV and DENV2 serotypes. These findings suggest that strategies for differential diagnostics on the basis of short linear NS1 sequences are likely to fail due to immunological cross-reactions. Overall, results provide the molecular basis of differential discrimination between Zika and DENVs by NS1 monoclonal antibodies.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that harbors mutations in homologous recombination-repair (HR-repair) proteins in 20%-25% of cases. Defects in HR impart a specific vulnerability to poly ADP ribose polymerase inhibitors and platinum-containing chemotherapy in tumor cells. However, not all patients who receive these therapies respond, and many who initially respond ultimately develop resistance. Inactivation of the HR pathway is associated with the overexpression of polymerase theta (Polθ, or POLQ). This key enzyme regulates the microhomology-mediated end-joining (MMEJ) pathway of double-strand break (DSB) repair. Using human and murine HR-deficient PDAC models, we found that POLQ knockdown is synthetically lethal in combination with mutations in HR genes such as BRCA1 and BRCA2 and the DNA damage repair gene ATM. Further, POLQ knockdown enhances cytosolic micronuclei formation and activates signaling of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING), leading to enhanced infiltration of activated CD8+ T cells in BRCA2-deficient PDAC tumors in vivo. Overall, POLQ, a key mediator in the MMEJ pathway, is critical for DSB repair in BRCA2-deficient PDAC. Its inhibition represents a synthetic lethal approach to blocking tumor growth while concurrently activating the cGAS-STING signaling pathway to enhance tumor immune infiltration, highlighting what we believe to be a new role for POLQ in the tumor immune environment.
Project description:Zika virus (ZIKV) infection during pregnancy causes congenital defects such as fetal microcephaly. Monoclonal antibodies (MAbs) against the nonstructural protein 1 (NS1) have the potential to suppress ZIKV pathogenicity without enhancement of disease, but the pathways through which they confer protection remain obscure. Here, we report two types of NS1-targeted human MAbs that inhibit ZIKV infection through distinct mechanisms. MAbs 3G2 and 4B8 show a better efficacy than MAb 4F10 in suppressing ZIKV infection in C57BL/6 neonatal mice. Unlike MAb 4F10 that mainly triggers antibody-dependent cell-mediated cytotoxicity (ADCC), MAbs 3G2 and 4B8 not only trigger ADCC but inhibit ZIKV infection without Fcγ receptor-bearing effector cells, possibly at postentry stages. Destroying the Fc-mediated effector function of MAbs 3G2 and 4B8 reduces but does not abolish their protective effects, whereas destroying the effector function of MAb 4F10 eliminates the protective effects, suggesting that MAbs 3G2 and 4B8 engage both Fcγ receptor-dependent and -independent pathways. Further analysis reveals that MAbs 3G2 and 4B8 target the N-terminal region of NS1 protein, whereas MAb 4F10 targets the C-terminal region, implying that the protective efficacy of an NS1-targeted MAb may be associated with its epitope recognition. Our results illustrate that NS1-targeted MAbs have multifaceted protective effects and provide insights for the development of NS1-based vaccines and therapeutics.IMPORTANCE Zika virus (ZIKV) is a mosquito-borne flavivirus that has been linked to congenital microcephaly during recent epidemics. No licensed antiviral drug or vaccine is available. Monoclonal antibodies (MAbs) against the nonstructural protein 1 (NS1) inhibit ZIKV pathogenicity but do not enhance the disease as envelope protein-targeted MAbs do. However, the protection mechanisms are not fully understood. Here, we show that in the presence or absence of Fcγ receptor-bearing effector cells, NS1-targeted human MAbs 3G2 and 4B8 inhibit ZIKV infection. Compared to MAb 4F10 that has no inhibitory effects without effector cells, 3G2 and 4B8 confer better protection in ZIKV-infected neonatal mice. Destroying the Fc-mediated effector function reduces but does not abolish the protection of 3G2 and 4B8, suggesting that they engage both Fcγ receptor-dependent and -independent pathways. The protective efficacy of NS1-targeted MAbs may be associated with their epitope recognition. Our findings will help to develop NS1-based vaccines and therapeutics.
Project description:Caspase-8, an aspartate-specific cysteine protease that primarily functions as an initiator caspase to induce apoptosis, can downregulate innate immunity in part by cleaving RIPK1 and IRF3. However, patients with caspase-8 mutations or deficiency develop immunodeficiency and are prone to viral infections. The molecular mechanism underlying this controversy remains unknown. Whether caspase-8 enhances or suppresses antiviral responses against influenza A virus (IAV) infection remains to be determined. Here, we report that caspase-8 is readily activated in A549 and NL20 cells infected with the H5N1, H5N6, and H1N1 subtypes of IAV. Surprisingly, caspase-8 deficiency and two caspase-8 inhibitors, Z-VAD and Z-IETD, do not enhance but rather downregulate antiviral innate immunity, as evidenced by decreased TBK1, IRF3, IκBα, and p65 phosphorylation, decreased IL-6, IFN-β, MX1, and ISG15 gene expression; and decreased IFN-β production but increased virus replication. Mechanistically, caspase-8 cleaves and inactivates CYLD, a tumor suppressor that functions as a deubiquitinase. Caspase-8 inhibition suppresses CYLD cleavage, RIG-I and TAK1 ubiquitination, and innate immune signaling. In contrast, CYLD deficiency enhances IAV-induced RIG-I and TAK1 ubiquitination and innate antiviral immunity. Neither caspase-3 deficiency nor treatment with its inhibitor Z-DEVD affects CYLD cleavage or antiviral innate immunity. Our study provides evidence that caspase-8 activation in two human airway epithelial cell lines does not silence but rather enhances innate immunity by inactivating CYLD.
Project description:Cyclic GMP-AMP synthase (cGAS) plays a major role in detecting pathogenic DNA. It produces cyclic dinucleotide cGAMP, which subsequently binds to the adaptor protein STING and further triggers antiviral innate immune responses. However, the molecular mechanisms regulating cGAS enzyme activity remain largely unknown. Here, we characterize the cGAS-interacting protein Poly(rC)-binding protein 2 (PCBP2), which plays an important role in controlling cGAS enzyme activity, thereby mediating appropriate cGAS-STING signaling transduction. We find that PCBP2 overexpression reduces cGAS-STING antiviral signaling, whereas loss of PCBP2 significantly increases cGAS activity. Mechanistically, we show that PCBP2 negatively regulates anti-DNA viral signaling by specifically interacting with cGAS but not other components. Moreover, PCBP2 decreases cGAS enzyme activity by antagonizing cGAS condensation, thus ensuring the appropriate production of cGAMP and balancing cGAS-STING signal transduction. Collectively, our findings provide insight into how the cGAS-mediated antiviral signaling is regulated.