CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion
Ontology highlight
ABSTRACT: The Streptococcus pyogenes CRISPR/Cas9 nuclease (SpyCas9) has been widely applied in genetic engineering. Despite its importance in genome editing, aspects of the precise molecular mechanism of Cas9 activity remain ambiguous. In particular, because of the lack of a method with high spatio-temporal resolution, transient interactions between Cas9 and DNA could not be reliably investigated. It therefore remains controversial how Cas9 searches for protospacer adjacent motif (PAM) sequences. We have developed single-molecule Förster resonance energy transfer (smFRET) assays to monitor transient interactions of Cas9 and DNA in real time. Our study shows that Cas9 interacts with the PAM sequence weakly, yet probing neighboring sequences via facilitated diffusion. This dynamic mode of interactions leads to translocation of Cas9 to another PAM nearby and consequently an on-target sequence. We propose a model in which lateral diffusion competes with 3-dimensional diffusion and thus is involved in PAM finding and consequently on-target binding. Our results imply that the neighboring sequences can be very important when choosing a target in genetic engineering applications.
Project description:The Streptococcus pyogenes CRISPR/Cas9 nuclease (SpyCas9) has been widely applied in genetic engineering. Despite its importance in genome editing, aspects of the precise molecular mechanism of Cas9 activity remain ambiguous. In particular, because of the lack of a method with high spatio-temporal resolution, transient interactions between Cas9 and DNA could not be reliably investigated. It therefore remains controversial how Cas9 searches for protospacer adjacent motif (PAM) sequences. We have developed single-molecule Förster resonance energy transfer (smFRET) assays to monitor transient interactions of Cas9 and DNA in real time. Our study shows that Cas9 interacts with the PAM sequence weakly, yet probing neighboring sequences via facilitated diffusion. This dynamic mode of interactions leads to translocation of Cas9 to another PAM nearby and consequently an on-target sequence. We propose a model in which lateral diffusion competes with 3-dimensional diffusion and thus is involved in PAM finding and consequently on-target binding. Our results imply that the neighboring sequences can be very important when choosing a target in genetic engineering applications.
Project description:The Streptococcus pyogenes CRISPR/Cas9 (SpCas9) nuclease has been widely applied in genetic engineering. Despite its importance in genome editing, aspects of the precise molecular mechanism of Cas9 activity remain ambiguous. In particular, because of the lack of a method with high spatio-temporal resolution, transient interactions between Cas9 and DNA could not be reliably investigated. It therefore remains controversial how Cas9 searches for protospacer adjacent motif (PAM) sequences. We have developed single-molecule Förster resonance energy transfer (smFRET) assays to monitor transient interactions of Cas9 and DNA in real time. Our study shows that Cas9 interacts with the PAM sequence weakly, yet probing neighboring sequences via facilitated diffusion. This dynamic mode of interactions leads to translocation of Cas9 to another PAM nearby and consequently an on-target sequence. We propose a model in which lateral diffusion competes with three-dimensional diffusion and thus is involved in PAM finding and consequently on-target binding. Our results imply that the neighboring sequences can be very important when choosing a target in genetic engineering applications.
Project description:CRISPR-Cas9 is a genome editing technology with major impact in life sciences. In this system, the endonuclease Cas9 generates double strand breaks in DNA upon RNA-guided recognition of a complementary DNA sequence, which strictly requires the presence of a protospacer adjacent motif (PAM) next to the target site. Although PAM recognition is essential for cleavage, it is unknown whether and how PAM binding activates Cas9 for DNA cleavage at spatially distant sites. Here, we find evidence of a PAM-induced allosteric mechanism revealed by microsecond molecular dynamics simulations. PAM acts as an allosteric effector and triggers the interdependent conformational dynamics of the Cas9 catalytic domains (HNH and RuvC), responsible for concerted cleavage of the two DNA strands. Targeting such an allosteric mechanism should enable control of CRISPR-Cas9 functionality.
Project description:To expand the repertoire of Cas9s available for genome targeting, we present a new in vitro method for the simultaneous examination of guide RNA and protospacer adjacent motif (PAM) requirements. The method relies on the in vitro cleavage of plasmid libraries containing a randomized PAM as a function of Cas9-guide RNA complex concentration. Using this method, we accurately reproduce the canonical PAM preferences for Streptococcus pyogenes, Streptococcus thermophilus CRISPR3 (Sth3), and CRISPR1 (Sth1). Additionally, PAM and sgRNA solutions for a novel Cas9 protein from Brevibacillus laterosporus are provided by the assay and are demonstrated to support functional activity in vitro and in plants.
Project description:The clustered regularly interspaced short palindromic repeat (CRISPR)-associated enzyme Cas9 is an RNA-guided nuclease that has been widely adapted for genome editing in eukaryotic cells. However, the in vivo target specificity of Cas9 is poorly understood and most studies rely on in silico predictions to define the potential off-target editing spectrum. Using chromatin immunoprecipitation followed by sequencing (ChIP-seq), we delineate the genome-wide binding panorama of catalytically inactive Cas9 directed by two different single guide (sg) RNAs targeting the Trp53 locus. Cas9:sgRNA complexes are able to load onto multiple sites with short seed regions adjacent to (5')NGG(3') protospacer adjacent motifs (PAM). Yet among 43 ChIP-seq sites harboring seed regions analyzed for mutational status, we find editing only at the intended on-target locus and one off-target site. In vitro analysis of target site recognition revealed that interactions between the 5' end of the guide and PAM-distal target sequences are necessary to efficiently engage Cas9 nucleolytic activity, providing an explanation for why off-target editing is significantly lower than expected from ChIP-seq data.
Project description:The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9-gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence. Given that the efficiency of target location may depend on the strength of interactions that promote target recognition, here we sought to compare affinities of different Cas9 nucleases for their cognate PAM sequences. To this end, we measured affinities of Cas9 nucleases from Streptococcus pyogenes, Staphylococcus aureus, and Francisella novicida complexed with guide RNAs (gRNAs) (SpCas9-gRNA, SaCas9-gRNA, and FnCas9-gRNA, respectively) and of three engineered SpCas9-gRNA variants with altered PAM specificities for short, PAM-containing DNA probes. We used a "beacon" assay that measures the relative affinities of DNA probes by determining their ability to competitively affect the rate of Cas9-gRNA binding to fluorescently labeled target DNA derivatives called "Cas9 beacons." We observed significant differences in the affinities for cognate PAM sequences among the studied Cas9 enzymes. The relative affinities of SpCas9-gRNA and its engineered variants for canonical and suboptimal PAMs correlated with previous findings on the efficiency of these PAM sequences in genome editing. These findings suggest that high affinity of a Cas9 nuclease for its cognate PAM promotes higher genome-editing efficiency.
Project description:While the CRISPR-Cas9 system from S. pyogenes is a powerful genome engineering tool, additional programmed nucleases would enable added flexibility in targeting space and multiplexing. Here, we characterized a CRISPR-Cas9 system from L. gasseri and found that it has modest activity in a cell-free lysate assay but no activity in mammalian cells even when altering promoter, position of tag sequences and NLS, and length of crRNA:tracrRNA. In the lysate assay we tested over 400 sequential crRNA target sequences and found that the Lga Cas9 PAM is NNGA/NDRA, different than NTAA predicted from the native bacterial host. In addition, we found multiple instances of consecutive crRNA target sites, indicating flexibility in either PAM sequence or distance from the crRNA target site. This work highlights the need for characterization of new CRISPR systems and highlights the non-triviality of porting them into eukaryotes as gene editing tools.
Project description:Clustered regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. We integrated commercially available reagents into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. We also developed a rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction. Our findings provide proof-of-principle for CRISPR/Cas9 point-of-care diagnosis as well as a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology.
Project description:Gene therapy of dominantly inherited genetic diseases requires either the selective disruption of the mutant allele or the editing of the specific mutation. The CRISPR-Cas system holds great potential for the genetic correction of single nucleotide variants (SNVs), including dominant mutations. However, distinguishing between single-nucleotide variations in a pathogenic genomic context remains challenging. The presence of a PAM in the disease-causing allele can guide its precise targeting, preserving the functionality of the wild-type allele. The AlPaCas (Aligning Patients to Cas) webserver is an automated pipeline for sequence-based identification and structural analysis of SNV-derived PAMs that satisfy this demand. When provided with a gene/SNV input, AlPaCas can: (i) identify SNV-derived PAMs; (ii) provide a list of available Cas enzymes recognizing the SNV (s); (iii) propose mutational Cas-engineering to enhance the selectivity towards the SNV-derived PAM. With its ability to identify allele-specific genetic variants that can be targeted using already available or engineered Cas enzymes, AlPaCas is at the forefront of advancements in genome editing. AlPaCas is open to all users without a login requirement and is freely available at https://schubert.bio.uniroma1.it/alpacas.
Project description:Designing efficient and specific CRISPR single-guide RNAs (sgRNAs) is vital for the successful application of CRISPR technology. Currently, a growing number of new RNA-guided endonucleases with a different protospacer adjacent motif (PAM) have been discovered, suggesting the necessity to develop a versatile tool for designing sgRNA to meet the requirement of different RNA-guided DNA endonucleases. Here, we report the development of a flexible sgRNA design program named "CRISPR-offinder". Support for user-defined PAM and sgRNA length was provided to increase the targeting range and specificity. Additionally, evaluation of on- and off-target scoring algorithms was integrated into the CRISPR-offinder. The CRISPR-offinder has provided the bench biologist a rapid and efficient tool for identification of high quality target sites, and it is freely available at https://sourceforge.net/projects/crispr-offinder-v1-2/ or http://www.biootools.com.