Ythdf is a N6-methyladenosine reader that modulates Fmr1 target mRNA selection and restricts axonal growth in Drosophila
Ontology highlight
ABSTRACT: N6-methyladenosine (m6A) regulates a variety of physiological processes through modulation of RNA metabolism. This modification is particularly enriched in the nervous system of several species, and its dysregulation has been associated with neurodevelopmental defects and neural dysfunctions. In Drosophila, loss of m6A alters fly behavior, albeit the underlying molecular mechanism and the role of m6A during nervous system development have remained elusive. Here we find that impairment of the m6A pathway leads to axonal overgrowth and misguidance at larval neuromuscular junctions as well as in the adult mushroom bodies. We identify Ythdf as the main m6A reader in the nervous system, being required to limit axonal growth. Mechanistically, we show that the m6A reader Ythdf directly interacts with Fmr1, the fly homolog of Fragile X mental retardation RNA binding protein (FMRP), to inhibit the translation of key transcripts involved in axonal growth regulation. Altogether, this study demonstrates that the m6A pathway controls development of the nervous system and modulates Fmr1 target transcript selection.
Project description:N6-methyladenosine (m6 A) regulates a variety of physiological processes through modulation of RNA metabolism. This modification is particularly enriched in the nervous system of several species, and its dysregulation has been associated with neurodevelopmental defects and neural dysfunctions. In Drosophila, loss of m6 A alters fly behavior, albeit the underlying molecular mechanism and the role of m6 A during nervous system development have remained elusive. Here we find that impairment of the m6 A pathway leads to axonal overgrowth and misguidance at larval neuromuscular junctions as well as in the adult mushroom bodies. We identify Ythdf as the main m6 A reader in the nervous system, being required to limit axonal growth. Mechanistically, we show that the m6 A reader Ythdf directly interacts with Fmr1, the fly homolog of Fragile X mental retardation RNA binding protein (FMRP), to inhibit the translation of key transcripts involved in axonal growth regulation. Altogether, this study demonstrates that the m6 A pathway controls development of the nervous system and modulates Fmr1 target transcript selection.
Project description:The abundant mRNA modification N6-methyladenosine (m6A) regulates a variety of physiological processes through modulation of RNA metabolism. m6A is particularly enriched in the nervous system of several species and its dysregulation has been associated with neurodevelopmental defects as well as neural dysfunctions. In Drosophila, the loss of m6A alters fly behavior but the underlying mechanism and the role of m6A during nervous system development have remained elusive. Here we found that impairment of the m6A pathway leads to axonal overgrowth and misguidance at larval neuromuscular junctions as well as in the adult mushroom bodies. We identify the RNA binding protein Ythdf as the main m6A reader in the nervous system required for limiting axonal growth. Mechanistically, we show that Ythdf interacts directly with Fragile X mental retardation protein (Fmr1) to inhibit the translation of key transcripts involved in axonal growth regulation. Altogether, this study demonstrates that the m6A pathway controls development of the nervous system by modulating Fmr1 target selection.
Project description:Subcellular localization of mRNAs is regulated by RNA-protein interactions. Here, we show that introduction of a reporter mRNA with the 3'UTR of ?-actin mRNA competes with endogenous mRNAs for binding to ZBP1 in adult sensory neurons. ZBP1 is needed for axonal localization of ?-actin mRNA, and introducing GFP with the 3'UTR of ?-actin mRNA depletes axons of endogenous ?-actin and GAP-43 mRNAs and attenuates both in vitro and in vivo regrowth of severed axons. Consistent with limited levels of ZBP1 protein in adult neurons, mice heterozygous for the ZBP1 gene are haploinsufficient for axonal transport of ?-actin and GAP-43 mRNAs and for regeneration of peripheral nerve. Exogenous ZBP1 can rescue the RNA transport deficits, but the axonal growth deficit is only rescued if the transported mRNAs are locally translated. These data support a direct role for ZBP1 in transport and translation of mRNA cargos in axonal regeneration in vitro and in vivo.
Project description:N6-methyladenosine (m6A) modification is the most prevalent internal modification in eukaryotic mRNA. YTH domain containing 2 (YTHDC2), a m6A binding protein, has recently been identified as a key player in human cancer. However, its contribution to gastric cancer (GC) remains unknown. Herein, we found that YTHDC2 was significantly upregulated in human GC tissues and associated with poor prognosis. CRISPR-Cas9 mediated YTHDC2 knockout notably inhibited GC cell viability, proliferation and invasion. Transcriptome analysis coupled with mechanism experiments revealed that yes-associated protein (YAP), the well-known oncogene, is the target of YTHDC2 in GC cells. Specifically, YTHDC2 recognized m6A-modified YAP mRNA at 5`-UTR, resulting in enhancing the translation efficiency of YAP, without affecting its mRNA level. In turn, YAP/TEAD directly targeted -843∼-831 region on the promoter of YTHDC2 and activated the transcription of YTHDC2, thus forming a positive regulatory loop. Further, using the xenograft tumor model, we found that knockout of YTHDC2 markedly reduced tumor size and lung metastasis nodules in vivo. And high YTHDC2 was strongly positively correlated with high YAP in clinical GC tissues. Collectively, our data demonstrate that YTHDC2 is a novel oncogene in GC, which provides the theoretical basis for the strategy of targeting YTHDC2 for GC patients.
Project description:The m6A reader Ythdf restricts axonal growth in Drosophila through target selection modulation of the Fragile X mental retardation protein
Project description:BackgroundN6-methyladenosine (m6A) methylation epigenetically regulates normal hematopoiesis and plays a role in the pathogenesis of acute myeloid leukemia (AML). However, its potential value for prognosis remains elusive.MethodsAnalysis of the datasets downloaded from The Cancer Genome Atlas and Genotype Tissue Expression databases revealed that the expression level of 20 regulators related to m6A RNA methylation differ between patients with AML and normal individuals. A prognostic risk model with three genes (YTHDF3, IGF2BP3, and HNRNPA2B1) was developed using univariate Cox regression and the least absolute shrinkage and selection operator Cox regression methods.ResultsThis established signature demonstrated good predictive efficacy with an area under the curve of 0.892 and 0.731 in the training cohort and the validation cohort, respectively. Patients with AML and an increased level of Insulin growth factor 2 mRNA binding protein 3 (IGF2BP3) expression exhibited a poor prognosis. IGF2BP3 knockdown significantly induced G0/G1 phase arrest and inhibited cell proliferation, apoptosis, and/or differentiation. Further, the JAK/STAT pathway may be involved in the regulation of EPOR expression by IGF2BP3-mediated m6A RNA methylation.ConclusionThese findings indicate that IGF2BP3 plays a carcinogenic role in AML, implying that it can predict patient survival and could be an effective strategy for AML therapy.
Project description:The KH-type splicing regulatory protein (KSRP) promotes the decay of AU-rich element (ARE)-containing mRNAs. Although KSRP is expressed in the nervous system, very little is known about its role in neurons. In this study, we examined whether KSRP regulates the stability of the ARE-containing GAP-43 mRNA. We found that KSRP destabilizes this mRNA by binding to its ARE, a process that requires the presence of its fourth KH domain (KH4). Furthermore, KSRP competed with the stabilizing factor HuD for binding to these sequences. We also examined the functional consequences of KSRP overexpression and knockdown on the differentiation of primary hippocampal neurons in culture. Overexpression of full length KSRP or KSRP without its nuclear localization signal hindered axonal outgrowth in these cultures, while overexpression of a mutant protein without the KH4 domain that has less affinity for binding to GAP-43's ARE had no effect. In contrast, depletion of KSRP led to a rise in GAP-43 mRNA levels and a dramatic increase in axonal length, both in KSRP shRNA transfected cells and neurons cultured from Ksrp(+/-) and Ksrp(-/-) embryos. Finally we found that overexpression of GAP-43 rescued the axonal outgrowth deficits seen with KSRP overexpression, but only when cells were transfected with GAP-43 constructs containing 3' UTR sequences targeting the transport of this mRNA to axons. Together, our results suggest that KSRP is an important regulator of mRNA stability and axonal length that works in direct opposition to HuD to regulate the levels of GAP-43 and other ARE-containing neuronal mRNAs.
Project description:The major function of Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is to regulate cell metabolism. However, emerging evidence indicates that IGF2BP2 plays a role in cancer, but the underlying mechanism is largely unknown. Here we showed that upregulation of IGF2BP2 is associated with poor outcomes of pancreatic cancer patients and suppression of IGF2BP2 inhibits cell proliferation. We further showed that IGF2BP2 regulates lncRNA DANCR. Ectopic expression IGF2BP2 enhances, whereas knockdown (KD) or knockout (KO) of IGF2BP2 suppresses DANCR expression. Moreover, in vivo RNA precipitation and reciprocal RNA immunoprecipitation revealed that IGF2BP2 interacts with DANCR. DANCR promotes cell proliferation and stemness-like properties. Experiments with xenograft models revealed that while ectopic expression of DANCR promotes, DANCR KO suppresses tumor growth. Mechanistically, DANCR is modified at N6-methyladenosine (m6A) and mutagenesis assay identified that adenosine at 664 of DANCR is critical to the interaction between IGF2BP2 and DANCR where IGF2BP2 serves a reader for m6A modified DANCR and stabilizes DANCR RNA. Together, these results suggest that DANCR is a novel target for IGF2BP2 through m6A modification, and IGF2BP2 and DANCR work together to promote cancer stemness-like properties and pancreatic cancer pathogenesis.