ATAD3B is a mitophagy receptor mediating clearance of oxidative stress-induced damaged mitochondrial DNA
Ontology highlight
ABSTRACT: Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A>G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A>G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.
Project description:Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A > G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A > G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.
Project description:Trichothecene mycotoxins are natural contaminants of small grain cereals and are encountered in the environment, posing a worldwide threat to human and animal health. Their mechanism of toxicity is poorly understood, and little is known about cellular protection mechanisms against trichothecenes. We previously identified inhibition of mitochondrial protein synthesis as a novel mechanism for trichothecene-induced cell death. To identify cellular functions involved in trichothecene resistance, we screened the Saccharomyces cerevisiae deletion library for increased sensitivity to nonlethal concentrations of trichothecin (Tcin) and identified 121 strains exhibiting higher sensitivity than the parental strain. The largest group of sensitive strains had significantly higher reactive oxygen species (ROS) levels relative to the parental strain. A dose-dependent increase in ROS levels was observed in the parental strain treated with different trichothecenes, but not in a petite version of the parental strain or in the presence of a mitochondrial membrane uncoupler, indicating that mitochondria are the main site of ROS production due to toxin exposure. Cytotoxicity of trichothecenes was alleviated after treatment of the parental strain and highly sensitive mutants with antioxidants, suggesting that oxidative stress contributes to trichothecene sensitivity. Cotreatment with rapamycin and trichothecenes reduced ROS levels and cytotoxicity in the parental strain relative to the trichothecene treatment alone, but not in mitophagy deficient mutants, suggesting that elimination of trichothecene-damaged mitochondria by mitophagy improves cell survival. These results reveal that increased mitophagy is a cellular protection mechanism against trichothecene-induced mitochondrial oxidative stress and a potential target for trichothecene resistance.
Project description:Neurodegenerative diseases are often characterized by mitochondrial dysfunction. In Alzheimer's disease, abnormal tau phosphorylation disrupts mitophagy, a quality control process through which damaged organelles are selectively removed from the mitochondrial network. The precise mechanism through which this occurs remains unclear. Previously, we showed that tau which has been mutated at Thr-231 to glutamic acid to mimic an Alzheimer's-relevant phospho-epitope expressed early in disease selectively inhibits oxidative stress-induced mitophagy in Caenorhabditis elegans. Here, we use immortalized mouse hippocampal neuronal cell lines to extend that result into mammalian cells. Specifically, we show that phosphomimetic tau at Ser-396/404 (EC) or Thr-231/Ser-235 (EM) partly inhibits mitophagy induction by paraquat, a potent inducer of mitochondrial oxidative stress. Moreover, a combination of immunologic and biochemical approaches demonstrates that the levels of the mitophagy receptor FKBP8, significantly decrease in response to paraquat in cells expressing EC or EM tau mutants, but not in cells expressing wildtype tau. In contrast, paraquat treatment results in a decrease in the levels of the mitophagy receptors FUNDC1 and BNIP3 in the presence of both wildtype tau and the tau mutants. Interestingly, FKBP8 is normally trafficked to the endoplasmic reticulum during oxidative stress induced mitophagy, and our results support a model where this trafficking is impacted by disease-relevant tau, perhaps through a direct interaction. We provide new insights into the molecular mechanisms underlying tau pathology in Alzheimer's disease and highlight FKBP8 receptor as a potential target for mitigating mitochondrial dysfunction in neurodegenerative diseases.
Project description:Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by a constant accumulation of lipids in the liver. This hepatic lipotoxicity is associated with a dysregulation of the first step in lipid catabolism, known as beta oxidation, which occurs in the mitochondrial matrix. Eventually, this dysregulation will lead to mitochondrial dysfunction. To evaluate the possible involvement of mitochondrial DNA methylation in this lipid metabolic dysfunction, we investigated the functional metabolic effects of mitochondrial overexpression of CpG (MSssI) and GpC (MCviPI) DNA methyltransferases in relation to gene expression and (mito)epigenetic signatures. Overall, the results show that mitochondrial GpC and, to a lesser extent, CpG methylation increase bile acid metabolic gene expression, inducing the onset of cholestasis through mito-nuclear epigenetic reprogramming. Moreover, both increase the expression of metabolic nuclear receptors and thereby induce basal overactivation of mitochondrial respiration. The latter promotes mitochondrial swelling, favoring lipid accumulation and metabolic-stress-induced mitophagy and autophagy stress responses. In conclusion, both mitochondrial GpC and CpG methylation create a metabolically challenging environment that induces mitochondrial dysfunction, which may contribute to the progression of MASLD.
Project description:In the present study, we investigated the influence of diquat-induced oxidative stress on intestinal barrier, mitochondrial function, and the level of mitophagy in piglets. Twelve male Duroc × Landrace × Yorkshire 35-d-old pigs (weaned at 21 d of age), with an average body of 9.6 kg, were allotted to two treatments of six piglets each including the challenged group and the control group. The challenged pigs were injected with 100 mg/kg bodyweight diquat and control pigs injected with 0.9% (w/v) NaCl solution. The results showed that diquat injection decreased ADFI and ADG. Diquat decreased (P < 0.05) the activities of superoxide dismutase and glutathione peroxidase and increased (P < 0.05) the malondialdehyde concentrations. The lower (P < 0.05) transepithelial electrical resistance and higher (P < 0.05) paracellular permeability of fluorescein isothiocyanatedextran 4 kDa were found in diquat challenged piglets. Meanwhile, diquat decreased (P < 0.05) the protein abundance of claudin-1, occluding, and zonula occludens-1 in jejunum compared with the control group. Diquat-induced mitochondrial dysfunction, as demonstrated by increased (P < 0.05) reactive oxygen species production and decreased (P < 0.05) membrane potential of intestinal mitochondria. Diquat-injected pigs revealed a decrease (P < 0.05) of mRNA abundance of genes related to mitochondrial biogenesis and functions, PPARg coactivator-1α, mammalian-silencing information regulator-1, nuclear respiratory factor-1, mt transcription factor A, mt single-strand DNA-binding protein, mt polymerase r, glucokinase, citrate synthase, ATP synthase, and cytochrome coxidase subunit I and V in the jejunum. Diquat induced an increase (P < 0.05) in expression of mitophagy-related proteins, phosphatase and tensin homologue deleted on chromosome 10-induced putative kinase, and Parkin in the intestinal mitochondria, as well as an enhancement of the ratio of light chain 3-II (LC3-II) to LC3-I content in the jejunal mucosa. These results suggest that oxidative stress disrupted the intestinal barrier, caused mitochondrial dysfunction, and triggered mitophagy.
Project description:Heart failure, mostly associated with cardiac hypertrophy, is a major cause of illness and death. Oxidative stress causes accumulation of reactive oxygen species (ROS), leading to mitochondrial dysfunction, suggesting that mitochondria-targeted therapies could be effective in this context. The purpose of this work was to determine whether mitochondria-targeted therapies could improve cardiac hypertrophy induced by mitochondrial ROS. We used neonatal (NCMs) and adult (ACMs) rat cardiomyocytes hypertrophied by isoproterenol (Iso) to induce mitochondrial ROS. A decreased interaction between sirtuin 3 and superoxide dismutase 2 (SOD2) induced SOD2 acetylation on lysine 68 and inactivation, leading to mitochondrial oxidative stress and dysfunction and hypertrophy after 24 h of Iso treatment. To counteract these mechanisms, we evaluated the impact of the mitochondria-targeted antioxidant mitoquinone (MitoQ). MitoQ decreased mitochondrial ROS and hypertrophy in Iso-treated NCMs and ACMs but altered mitochondrial structure and function by decreasing mitochondrial respiration and mitophagy. The same decrease in mitophagy was found in human cardiomyocytes but not in fibroblasts, suggesting a cardiomyocyte-specific deleterious effect of MitoQ. Our data showed the importance of mitochondrial oxidative stress in the development of cardiomyocyte hypertrophy. We observed that targeting mitochondria by MitoQ in cardiomyocytes impaired the metabolism through defective mitophagy, leading to accumulation of deficient mitochondria.
Project description:Sodium butyrate has gained increasing attention for its vast beneficial effects. However, whether sodium butyrate could alleviate oxidative stress-induced intestinal dysfunction and mitochondrial damage of piglets and its underlying mechanism remains unclear. The present study used a hydrogen peroxide- (H2O2-) induced oxidative stress model to study whether sodium butyrate could alleviate oxidative stress, intestinal epithelium injury, and mitochondrial dysfunction of porcine intestinal epithelial cells (IPEC-J2) in AMPK-mitophagy-dependent pathway. The results indicated that sodium butyrate alleviated the H2O2-induced oxidative stress, decreased the level of reactive oxygen species (ROS), increased mitochondrial membrane potential (MMP), mitochondrial DNA (mtDNA), and mRNA expression of genes related to mitochondrial function, and inhibited the release of mitochondrial cytochrome c (Cyt c). Sodium butyrate reduced the protein expression of recombinant NLR family, pyrin domain-containing protein 3 (NLRP3) and fluorescein isothiocyanate dextran 4 kDa (FD4) permeability and increased transepithelial resistance (TER) and the protein expression of tight junction. Sodium butyrate increased the expression of light-chain-associated protein B (LC3B) and Beclin-1, reduced the expression of P62, and enhanced mitophagy. However, the use of AMPK inhibitor or mitophagy inhibitor weakened the protective effect of sodium butyrate on mitochondrial function and intestinal epithelium barrier function and suppressed the induction effect of sodium butyrate on mitophagy. In addition, we also found that after interference with AMPKα, the protective effect of sodium butyrate on IPEC-J2 cells treated with H2O2 was suppressed, indicating that AMPKα is necessary for sodium butyrate to exert its protective effect. In summary, these results revealed that sodium butyrate induced mitophagy by activating AMPK, thereby alleviating oxidative stress, intestinal epithelium barrier injury, and mitochondrial dysfunction induced by H2O2.
Project description:The human ataxia telangiectasia mutated and Rad3-related (ATR) kinase functions in the nucleus to protect genomic integrity. Micronuclei (MN) arise from genomic and chromosomal instability and cause aneuploidy and chromothripsis, but how MN are removed is poorly understood. Here, we show that ATR is active in MN and promotes their rupture in S phase by phosphorylating Lamin A/C at Ser395, which primes Ser392 for CDK1 phosphorylation and destabilizes the MN envelope. In cells harboring MN, ATR or CDK1 inhibition reduces MN rupture. Consequently, ATR inhibitor (ATRi) diminishes activation of the cytoplasmic DNA sensor cGAS and compromises cGAS-dependent autophagosome accumulation in MN and clearance of micronuclear DNA. Furthermore, ATRi reduces cGAS-mediated senescence and killing of MN-bearing cancer cells by natural killer cells. Thus, in addition to the canonical ATR signaling pathway, an ATR-CDK1-Lamin A/C axis promotes MN rupture to clear damaged DNA and cells, protecting the genome in cell populations through unexpected cell-autonomous and cell-non-autonomous mechanisms.
Project description:Exercise simultaneously incites beneficial (e.g., signal) and harming (e.g., damage to macromolecules) effects, likely through the generation of reactive oxygen and nitrogen species (RONS) and downstream changes to redox homeostasis. Given the link between nuclear DNA damage and human longevity/pathology, research attempting to modulate DNA damage and restore redox homeostasis through non-selective pleiotropic antioxidants has yielded mixed results. Furthermore, until recently the role of oxidative modifications to mitochondrial DNA (mtDNA) in the context of exercising humans has largely been ignored. The development of antioxidant compounds which specifically target the mitochondria has unveiled a number of exciting avenues of exploration which allow for more precise discernment of the pathways involved with the generation of RONS and mitochondrial oxidative stress. Thus, the primary function of this review, and indeed its novel feature, is to highlight the potential roles of mitochondria-targeted antioxidants on perturbations to mitochondrial oxidative stress and the implications for exercise, with special focus on mtDNA damage. A brief synopsis of the current literature addressing the sources of mitochondrial superoxide and hydrogen peroxide, and available mitochondria-targeted antioxidants is also discussed.
Project description:The main pathological mechanism of intervertebral disc degeneration (IVDD) is the programmed apoptosis of nucleus pulposus (NP) cells. Oxidative stress is a significant cause of IVDD. Whether mitophagy is induced by strong oxidative stress in IVDD remains to be determined. This study aimed to investigate the relationship between oxidative stress and mitophagy and to better understand the mechanism of IVDD in vivo and in vitro. To this end, we obtained primary NP cells from the human NP and subsequently exposed them to TBHP. We observed that oxidative stress induced mitophagy to cause apoptosis in NP cells, and we suppressed mitophagy and found that NP cells were protected against apoptosis. Interestingly, TBHP resulted in mitophagy through the inhibition of the HIF-1α/NDUFA4L2 pathway. Therefore, the upregulation of mitochondrial NDUFA4L2 restricted mitophagy induced by oxidative stress. Furthermore, the expression levels of HIF-1α and NDUFA4L2 were decreased in human IVDD. In conclusion, these results demonstrated that the upregulation of NDUFA4L2 ameliorated the apoptosis of NP cells by repressing excessive mitophagy, which ultimately alleviated IVDD. These findings show for the first time that NDUFA4L2 and mitophagy may be potential therapeutic targets for IVDD.